Coronary Anatomy and Reperfusion Success in Acute Myocardial Infarction with ST Segment Elevation

Hadadi L1, Somkereki Cristina2, Scripa Ernestina1, Tilea I1,2, Dobreanu D1,2

1 Institute of Cardiovascular Diseases and Transplantation, Tirgu Mures, Romania
2 University of Medicine and Pharmacy, Tirgu Mures, Romania

Introduction: Multivessel disease has a major impact on reperfusion in acute myocardial infarction with ST segment elevation (STEMI), as well as on patients’ prognosis after primary percutaneous coronary intervention (PCI). Concurrently with the invasive treatment, a precise description of the coronary anatomy is obtained. However, there is only one scoring system based just on anatomy to appreciate the prognosis after PCI – the SYNTAX score (SXS) – and it was recently validated for STEMI cases. The relationship between the SXS and myocardial reperfusion has not been studied till now.

Material and methods: A retrospective study was performed including cases admitted with STEMI between 01 January 2010–31 January 2011. The SXSs were calculated. As a surrogate for reperfusion, ST segment resolution after angioplasty was measured and compared between the low, medium and high SXS tertiles. Total in-hospital mortality was also evaluated as a function of the SXS score.

Results: Eighty-four patients were enrolled in the study. The groups with low, medium and high values of SXS were homogenous with regard to: age, sex, presence of arterial hypertension, diabetes, smoking, ischemic period, pre- and postprocedural thrombolysis in myocardial infarction (TIMI) flow. However, mean ejection fraction was significantly lower in medium or high SXS tertiles (p < 0.05).

Medium and high values of SXS were significantly associated with poor ST segment resolution, as well as a higher in-hospital mortality (p < 0.05).

Conclusion: Complex coronary anatomy has a negative influence on the short-term prognosis of STEMI, possibly partially by poor reperfusion, in spite of achieving a good epicardial flow.

Keywords: SYNTAX score, STEMI, PCI, reperfusion
presence of a trifurcation or bifurcation, vessel angulation, aorto-ostial lesions, severe tortuosity, long, calcified and thrombotic lesions and “diffuse” disease).

Statistical analysis
All variables were stratified according to SXS tertiles. Discrete data were summarized as frequencies (%), whereas parametric continuous data were expressed as mean ± SD, and nonparametric continuous data were expressed as median. Gaussian distribution of data was evaluated with the Kolmogorov-Smirnov test. The Chi-square test (categorical variables), unpaired t-test, 1-way analysis of variance test (parametric, continuous variables), and Mann-Whitney U-test, as well as the Kruskal-Wallis test (nonparametric, continuous variables) were used to analyze differences between the 3 study groups. A probability value of < 0.05 was considered significant, and all tests were 2-tailed. Statistical analysis was performed using the Version 3.1 of the GraphPad InStat software.

Results
Corresponding to the inclusion criteria, eighty-four patients were enrolled in the study. The clinical, angiographic and procedural characteristics of the subjects are shown in Table I. The SXS ranged from 3 to 61, with a mean±SD of 19.6±11.7, a median of 18, and a non-Gaussian distribution. Multivessel disease (> 50% stenosis in at least 2 of the 3 major epicardial vessels) was present in 60.7% of the subjects (table I).

The groups with low, medium and high values of SXS were homogenous with regard to: age, sex, presence of arterial hypertension, diabetes, dyslipidemia, current cigarette smoking, time interval between symptom onset and PCI, pre- and post-procedural TIMI-flow (p > 0.05, table I). However, anterior localization of the infarction, lower ejection fraction, cardiogenic shock, cardiac arrest at admission and presence of multivessel disease were more probable in the medium and high SXS tertiles (p < 0.05, table I).

According to the low, medium and high SXS tertiles, the mean±SD of ST segment resolution was 80.2±20%, 64.6±25% and 61.8±34%, with the medians of 81.5, 66.0 and 70.5 respectively and a nonparametric distribution. The difference between the three patient groups was statistically significant (p = 0.03; table I). ST-segment resolution was found to be significantly lower in the case of deceased patients (46.2±39.1% vs. 72.3±24.4%, medians: 40 and 75, p = 0.02).

A total in-hospital mortality of 13% was found; there were no exceptions: cardiogenic shock (10 patients, 50% mortality) and post resuscitation cases (12 patients, 41% mortality) were all included in calculations. Of the 11 deceased patients only 4 presented without cardiogenic shock and/or did not suffer a cardiac arrest before the emergent PCI. Mortality was 0%, 10.7% and 28.5% in the low, medium and high SXS tertiles, respectively, significantly higher in the SXS high group (p = 0.008).

Discussions
The negative influence of multivessel disease on the short- and long-term prognosis of STEMI is well known [1,2], and the presence of additional lesions in other coronary arteries than the infarct related one was incorporated in one scoring system [8] used for the evaluation of the probability of future cardiovascular events after an acute STEMI. There is also evidence, that successful reperfusion is harder to achieve even with primary PCI when remote coronary artery disease is present, although the exact reason for this observation is not known [2]. The term “multivessel” could be misleading: in different studies there are multiple definitions, and does not mean necessarily a complex anatomy [9] (figure 1).

Originally, the SXS was designed to predict outcomes related to anatomical characteristics and, to a lesser extent, the functional risk of occlusion in case of percutaneous revascularization for any segment of the coronary-artery bed in patients with stable disease, affecting the left main and/or all the three major epicardial coronary arteries [6,9]. The SXS was recently validated for clinical outcomes in patients with acute STEMI [7], but without the evaluation of the relationship with myocardial reperfusion, although the complexity of coronary anatomy could have an important role in poor reperfusion, despite the restoration of normal epicardial flow [2]. Indeed, medium and high values of SXS

### Table I. Clinical, electrocardiographic, echocardiographic and angiographic characteristics of the enrolled patients, according to the SYNTAX score tertiles. Values are N (%), unless otherwise stated.

<table>
<thead>
<tr>
<th></th>
<th>SXS low N = 28</th>
<th>SXS medium N = 28</th>
<th>SXS high N = 28</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59.4</td>
<td>62.8</td>
<td>66.5</td>
<td>0.11</td>
</tr>
<tr>
<td>Male</td>
<td>24 (85.7)</td>
<td>19 (67.8)</td>
<td>18 (64.2)</td>
<td>0.15</td>
</tr>
<tr>
<td>Hypertension</td>
<td>19 (67.8)</td>
<td>19 (67.8)</td>
<td>17 (60.7)</td>
<td>0.81</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>9 (32.1)</td>
<td>3 (10.7)</td>
<td>10 (35.7)</td>
<td>0.07</td>
</tr>
<tr>
<td>Current smoking</td>
<td>13 (46.4)</td>
<td>12 (42.8)</td>
<td>10 (35.7)</td>
<td>0.7</td>
</tr>
<tr>
<td>Obesity</td>
<td>11 (39.2)</td>
<td>8 (28.5)</td>
<td>11 (39.2)</td>
<td>0.62</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>14 (50)</td>
<td>6 (21.4)</td>
<td>10 (35.7)</td>
<td>0.07</td>
</tr>
<tr>
<td>Ischemic period</td>
<td>4.5</td>
<td>4.0</td>
<td>4.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Shock at admission</td>
<td>1 (3.5)</td>
<td>3 (10.7)</td>
<td>6 (21.4)</td>
<td>0.01</td>
</tr>
<tr>
<td>Cardiac arrest at admission</td>
<td>1 (3.5)</td>
<td>4 (14.2)</td>
<td>7 (25)</td>
<td>0.005</td>
</tr>
<tr>
<td>Anterior localization of STEMI</td>
<td>3 (10.7)</td>
<td>17 (60.7)</td>
<td>17 (60.7)</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>ST-segment resolution (% median)</td>
<td>81.5</td>
<td>66.0</td>
<td>70.5</td>
<td>0.03</td>
</tr>
<tr>
<td>LVEF (% median)</td>
<td>50</td>
<td>44</td>
<td>40</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Multivessel disease</td>
<td>10 (35)</td>
<td>15 (63)</td>
<td>26 (92.8)</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Preprocedural TIMI flow 0 and 1</td>
<td>22 (78.5)</td>
<td>25 (89.2)</td>
<td>24 (85.7)</td>
<td>0.52</td>
</tr>
<tr>
<td>Postprocedural TIMI flow &lt;3</td>
<td>8 (28.5)</td>
<td>3 (10.7)</td>
<td>10 (35.7)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

SXS = SYNTAX score; STEMI = ST segment elevation myocardial infarction; LVEF = left ventricular ejection fraction; TIMI = thrombolysis in myocardial infarction
were significantly associated with poor ST segment resolution in our study; although the post-PCI epicardial flow assessed conform the TIMI trial grading system [10] was not significantly different in the predefined patient tertiles. This could be as a result of more extensive atherosclerosis, which involves the microvasculature, or a higher grade of endothelial dysfunction [2]. Also, higher total in-hospital mortality was found in the SXS high group. In this latter tertile, there was more frequent the incidence of anterior infarction, depressed left ventricular systolic function, as well as cardiogenic shock or cardiac arrest at admission, and all these clinical variables are known to be associated with a poor prognosis in STEMI [1,7]. Obviously, successful reperfusion was significantly less frequently observed in the group of deceased subjects. The exact mechanism by which complex atherosclerotic disease of the coronary arteries negatively influences the effect of mechanical reperfusion therapy in STEMI deserves further studies.

Our study has the limitations of the retrospective design and the small sample size analyzed; we consider that these results should be reproduced in larger, prospective clinical trials.

Fig. 1. Possible differences between a “high SYNTAX score” and a “multivessel disease” case. A and B – left and right selective coronary angiogram of a patient with a unique lesion: acute occlusion of the LAD (white arrow on A), calculated SXS = 23.5. C and D – left and right selective coronary angiogram of a patient with focal stenoses on the LAD and the LCX (black arrows on C) and acute occlusion of the RCA (white arrow on D), calculated SXS = 13.5. LAD = left anterior descending artery; LCX = left circumflex artery, RCA = right coronary artery, SXS = SYNTAX score.
Conclusions
Complex coronary anatomy defined by high values of the SYNTAX score has a negative influence on the short-term prognosis of STEMI, possibly partially by poor reperfusion, in spite of achieving a good epicardial flow. Future, preferably prospective and larger studies are needed to validate this observation.

Acknowledgment
This paper is partly supported by the Sectorial Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU 80641.

References
7. Garg S, Sarno G, Serruys PW et al – Prediction of 1-year clinical outcomes using the SYNTAX score in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a substudy of the STRATEGY (Single High-Dose Bolus Tirofiban and Sirolimus-Eluting Stent Versus Abciximab and Bare-Metal Stent in Acute Myocardial Infarction) and MULTISTRATEGY (Multicenter Evaluation of Single High-Dose Bolus Tirofiban Versus Abciximab With Sirolimus-Eluting Stent or Bare-Metal Stent in Acute Myocardial Infarction Study) trials. JACC Cardiovasc Interv 2011, 4:66-75