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Light Curing Units
In parallel with developments in resin based composite 
technology, there have been changes in light curing units 
(LCU). Broadly, there are four categories of LCUs available 
in the market, with the two commonest used in Dentistry 
being quartz tungsten halogen (QTH) lamps and light 
emitting diode (LED) units, though now, QTH is infre-
quently used in most developed countries.

Argon-ion lasers and Plasma-arc lamps (PALs) had many 
disadvantages limiting their use. Argon-ion lasers were large 
devices with increased cost compared to QTHs, [1] PALs 
had low curing efficiency, increased shrinkage and micro 
leakage due to fast curing, [2] increased cost, heat and power 
consumption and decline of lights power output over time 
compared to QTHs [1,3,4]. Because of their limitations, 
neither LCU have been in regular use in clinical dentistry 
and therefore will not be discussed further.

Quartz Tungsten Halogen Lamps (QTHs)
QTHs were the first units to be developed and remained 
in common use for many years. They had spectral wave-
length range of 370-550 nm [2,5,6], with a spectrum peak 
of 465-470 nm, matching the absorption peak of CQ [1 , 
7] QTHs were available with a power intensity of 300-800 
mW/cm2 (milliwatts per square centimeter).

QTHs emit the light when an electric current flows 
through heated tungsten filament which surrounded by 
halogen gas. Because these filaments acted as resistors to 
the passage of electric current, heat was generated [1]. Fil-
ters were used to restrict the light to the blue region re-
quired for composite polymerization [8].

While relatively low cost technology, they were ineffi-
cient, with long curing times needed, produced a lot of 
waste energy in the form of heat, required the use of fans, 
and tended to have a short service life as a result of bulb, 

reflector and filter degradation [3]. QTHs have now been 
superseded by the more efficient LED LCUs.

Light Emitting Diode (LED) Units
LEDs produce blue light without filters through using a 
semiconductor material system (gallium nitride). They 
produce less heat with low power consumption [3] a long-
er working life when compared to QTH LCUs. They emit 
light in a very narrow spectral range, have high efficiency 
and can be  battery- powered cordless units without the 
need for fans [9,10]. LED LCU’s are now widely used in 
clinics because of their advantages over other types of unit. 
There have been many advances in development through 
three generations. This will be discussed more in the fol-
lowing Section.

Light Emitting Diode (LED) Units
The first generation of LED units (1999-2002) had an 
optimal emission between 440 and 500 nm with a maxi-
mum wavelength at 465-470 nm [1,3,7]. The first genera-
tion had a low power intensity range of 100-400 mW/cm2 
[4,7,10].

Most studies in that period compared these LEDs to 
QTHs and demonstrated inferior curing efficiency when 
compared to QTH [6].

The second generation of LED (2002-2004) had a high-
er intensity range of 500- 1400 mW/cm2 [4,7] and cured 
composite equivalently, or better, than QTH in a shorter 
time

[11-13]. Composites containing CQ could therefore be 
cured with these lights. However, a mismatch was report-
ed between the emission spectrum of these units (420-
490 nm) and other photoinitiators such as TPO and PPD 
(around 380-410 nm) resulting in inadequate curing of 
the material [1,14,15]. In an attempt to address this, and 
ensure that the RBCs containing these photoinitiators 
were optimally cured, dual peak LED light curing units, 
with an additional emission peak around 400 nm [1,16-* Correspondence to: Ario Santini
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19] were introduced in the third generation LED LCUs 
(2004- current).

Dual peak LED LCUs produced high irradiance of 
1000-3000 mW/cm2 and precaution was raised regarding 
material shrinkage and heat production with this very high 
intensity [4].

Relatively few studies have investigated the effect of us-
ing different types of LED LCU’s in relation to the type of 
incorporated photoinitiators on the curing of RBCs. This 
can be quite difficult since manufacturers commonly do not 
state the photoinitiators used in their RBC products [19,20].

LCUs and their effect on the Properties of Resin-Based 
Composites
Mechanical and physical properties of composite materials 
include flexural strength (σ), flexural “modulus of elastic-
ity” (E-flexural); both of which are macromechanical prop-
erties, and hardness and indentation modulus (E) both of 
which are micromechanical [21]. Other properties such 
as polymerization shrinkage, microleakage, marginal integ-
rity and creep deformation (Cr) were investigated in the 
literature.

Many of these properties of composite  materials  have  
been  investigated  to  ensure  good  performance  of  the  
material.  Inadequate curing of RBCs is known to affect the 
mechanical, physical and chemical properties of the mate-
rial, for example, water absorption, solubility, discoloration, 
wear resistance, dimensional stability, strength and hard-
ness, all of which can result in the failure of a restoration 
[22,23]. The degree of conversion (DC) has been acknowl-
edged as being vital to the clinical success of these materi-
als which is crucial in determining the mechanical perfor-
mance of the material and other physical properties [24].

Degree of Conversion (DC)
As previously noted, composite polymerization results in 
the monomer molecules being converted into a polymer 
chain. The degree of conversion (DC) of a material is the 
extent to which the monomer is converted into a polymer 
[25] and is quoted as the percentage of double C=C bonds 
within the monomer which convert to a single C-C bond.

In the literature, DC has been shown to vary from 40% 
to 80% in polymerized RBCs [26-29].

While resulting in many improved physical properties, 
an increase in DC will also increase the polymerization 
shrinkage stress with an adverse effect on marginal leakage.  
Therefore, several workers have recommended that the DC 
be increased to a percentage that balances optimum physi-
cal properties with polymerization shrinkage [6,9].

The minimum DC required for composite success clini-
cally has still to be established but is suggested to be at least 
55% [6,30].  The DC has a maximum possible rate which 
will not improve when increasing the total energy level of ir-
radiance from the LCUs [4] and will never be 100% [31,32].

Several factors have been found to influence the degree 
of cure and are broadly classified into material-related, 

LCU-related or the technique of the clinician. These will 
be discussed in the following Section.

Material-related Factors Affecting the Degree of Cure
Some factors related to RBC materials will affect the degree 
of cure. These are related to monomers and photoinitiators 
used in these materials.  The light transmission through a 
material will subsequently affect the degree of cure.

Monomers
The type, volume and viscosity of the monomer have been 
found to affect the degree of cure and thus, mechanical 
properties.  In the literature, increasing the diluent EG-
DMA and TEGDMA was found to increase the degree of 
cure [28,33,34] while an increase in the content of Bis-
GMA resulted in a decrease in the degree of cure [34,35].  
Using UDMA in a RBC showed a higher degree of cure 
when compared to Bis-GMA [6].  It is therefore necessary 
to make a careful balance of monomer to achieve optimum 
properties.

Photoinitiators
Several authors have shown that increasing the concentra-
tion of photoinitiators in the material will improve the 
degree of cure [36-39]. This will be only beneficial up to 
specific thresholds [40] and also may increase yellowing 
when CQ is used [38,39].

Also, the various types of photoinitiators have been 
found to affect the degree of cure. TPO molecules showed 
higher degree of cure than CQ/amine [6,15,41,42] espe-
cially when cured by dual peak LED LCUs [18,28] PPD 
showed no significant difference in the degree of cure com-
pared to CQ when cured with a LED LCU but not with a 
QTH LCU when it showed a lower degree of cure [43,44].  
PPD, when used in combination with CQ, resulted in a 
higher degree of cure compared to each of them when used 
alone [22]. However Brandt [44] found no difference in 
the degree of cure when using PPD/CQ together, or each 
one separately.

For this reason, in order to achieve better polymeriza-
tion, it is important to identify the absorption spectrum of 
the photoinitiator used in the RBC and to match it with 
the LCU used [45].

Light Transmission Through the Resin-Based Com-
posite
During polymerization, the intensity of light is known to 
decrease with transmission through the RBCs [46-49].  
Many factors such as filler load and size, shade, opacity, 
translucency and material thickness can affect light trans-
mission.  These factors are overlapped and will be discussed 
within the following Sections.

Filler
Filler type, size and loading will affect the degree of cure by 
altering light transmission [1]. For filler type, the adding 
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of reinforced fillers like hydroxyapatite showed an increase 
in light transmission through the material, which in turn 
resulted in higher surface hardness [50] conversely, light 
transmission was found to decrease with increasing filler 
content and filler size, because of the scattering effect of  
the fillers at larger size [28,51,52] also reported a nega-
tive effect of mismatching of the refractive index between 
monomer and filler on light transmission.

Shade and Opacity
Several workers have reported that darker shades and in-
creased opacity were found to cause   energy attenuation 
and diminished light through transmission [53-55] which 
resulted in reduced curing of the material [51,56].

Material Thickness
Because the light transmission will decrease with increas-
ing thickness, two mm increments were recommended as 
the maximum thickness to achieve an adequate depth of 
cure [57-59].

Regarding the dimension, in vitro, narrow specimens 
with same thickness showed reduced light transmission 
when compared to wider samples. This was thought to be 
because of the absorption of light by mold wall [60,61].

LCU-related Factors Affecting the Degree of Cure 

Type of LCU
It is important to match the absorption spectra of the 
photoinitiator with the emission spectra of the LCU 
[8,43,62,63] In other words, beside  the  importance of 
receiving sufficient  total energy, this energy must be de-
livered in the wavelength range which matches the absorp-
tion range of the photoinitiator used in  the RBCs [64].

It is uncommon for manufacturers to state the pho-
toinitiators used in their RBC products [19,20].  There-
fore, besides considering other factors, a specific LCU 
may perform differently when used with different brands 
of RBCs [64].

Total Energy: Intensity and Exposure Time
The total energy (J/cm2) is the result of irradiance intensity 
(mW/cm2) and exposure time (seconds).

Increasing the total light energy has been found to en-
hance the degree of cure and will therefore promote supe-
rior physical properties of the RBCs [1,65,66]. The total 
energy delivered to RBC materials can be affected by the 
power of the unit, curing time, activation modes and the 
surface area of the material to be cured [67].

Increasing the time of curing has been found to influ-
ence material curing when a 20 seconds exposure is used 
compared to 40 seconds [68] but no further improvement 
was found if the time was increased to 60 seconds [69,70] 
keeping in mind the adverse effect on pulp of temperature 
rise because of the heat. With the development of LED 
units, composite can be effectively cured in 20 seconds [6].

Also, the total energy delivered will be affected by differ-
ent light activation modes. These modes were introduced 
in attempt to improve polymerization and overcome the 
shrinkage stress, [9] reducing heat effects and to achieve 
better marginal integrity [4]. Examples of different modes 
are soft-start, which will use low irradiance first and fol-
lowed by higher irradiance, step-curing, oscillating irradia-
tion, high intensity, gradual or standard.

It was shown in the literature that light curing modes 
had a significant effect on the total energy and so the de-
gree of cure [71]. The most important factor is the total 
energy which delivered to the material to determine its de-
gree of cure [72-74].

The light guide tip diameter has an influence on the ef-
ficiency of curing lights.  Decreasing the tip diameter will 
result in increasing the light intensity which will affect the 
total energy and thus the degree of cure [75]. However, the 
scattering angle becomes wider so the light intensity will 
decrease more rapidly with increasing the distance to the 
top surface.

Distance of the LCU Tip to the Surface of the Restora-
tion
The degree of curing will be decreased as the distance in-
creases from the tip of the LCU to the composite’s surface 
because the light intensity will be reduced [71,76,77]. 
With variations in accessibility, cusp size and shape of cavi-
ties in posterior teeth, it may be difficult clinically to place 
the light tip on the composite surface. However, Rode [76] 
recommended that the distance should not exceed 3 mm 
to sufficiently cure 2 mm layer of composite.  Other stud-
ies only found an effect if the distance was more than 4 
mm [78] or more than 6 mm [6,10].

In the literature, Price [49] reported a reduction of the 
light intensity with a parallel light guide to 50 % and even 
23 % with a Turbo (smaller) light guide if the distance to 
the surface was 6 mm.

Total Energy Concept
The total energy (J/cm2) is the result of irradiance intensity 
(mW/cm2) and exposure time (second). There is almost 
full agreement in the literature about the total energy con-
cept which states that the result of multiplying intensity 
by curing time should always result in same total energy, 
thus increasing intensity and reducing time, or decreasing 
intensity and increasing time can result in the same total 
energy delivered to the restoration surface. However, there 
is some question about the validity of reciprocity for com-
binations of irradiance and time particularly high irradi-
ance and short time [41,61,66].

The total energy required to achieve sufficient polym-
erization is widely controversial in the literature and recent 
findings of literature in the area are summarized in Table I.

With the LCU’s development, manufacturers produced 
increased intensity units which resulted in the ability to 
decrease the curing time. This needs more investigation 
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as it may increase the polymerization shrinkage and stress 
[73].

In the literature, there are many techniques to measure 
degree of cure (including direct measurement of degree 
of conversion; DC), and techniques to measure the light 
intensity and transmission. These techniques will be dis-
cussed in the following Sections.

Measuring the Degree of Cure
Both indirect and direct methods have been reported for 
measuring the degree of cure of a RBC.  Microhardness 
tests indirectly measure the degree of cure while vibrational 
(molecular) spectroscopy, by measuring degree of conver-
sion, provides a direct measurement.  Other less popular 
techniques include differential thermal analysis (DTA), dif-
ferential scanning calorimetry (DSC) and nuclear magnet-
ic resonance (NMR). The following Sections will discuss 
Vibrational Spectroscopy and Microhardness Tests as they 
are the more widely used techniques quoted in studies.

Vibrational Spectroscopy
Vibrational Spectroscopy assesses the DC directly by meas-
uring both the percentage of carbon-carbon single bonds 
in the cured material and the percentage of unreacted car-
bon-carbon double bonds [79]. This is the result of meas-
uring the ratio of absorbance area (intensities) of aliphatic 
C=C(peak at 1640 cm-1) to aromatic C-C(peak at 1610 
cm-1). The latter is an internal standard before and after 
composite curing [80]. To calculate the DC, the following 
calculation (formula)  is used: 

DC= [1- Rcured / Runcured] X 100

Where R is the peak intensity ratio at 1640 cm-1 and 
1610 cm-1 in cured and uncured materials.

Vibrational spectroscopy can be classified to two tech-
niques. The first technique is Fourier Transform Infrared 
Spectroscopy (FTIR) which is sometimes documented as 

Infrared Spectroscopy (IR) and is based on light absorp-
tion. The second technique, Raman spectroscopy is based 
on light scattering. There are two devices which are popu-
larly used; Fourier transform-Raman spectroscopy (FT-
Raman) and micro- Raman spectroscopy (MRS).

Microhardness Test
This test basically works by loading a known force (in 
grams) via a diamond indenter to the top or bottom sur-
face of the sample for a specific time (in seconds). The 
commonest indenters used in the literature are the Knoop 
(KHN) and the Vickers (VH) indenters, both of which 
are easy to use. Studies have reported a high correlation 
between microhardness and DC [ 34,81,82].

Microhardness tests indirectly measure the degree of 
cure [82,83] by measuring ratio of the bottom to top 
surface values [84]. It was reported as an adequate curing 
when the ratio is at least 0.80 (80%) [82]. In other words, 
it should be no more than 20% difference between hard-
ness values of top and bottom surfaces.

Measuring Light Intensity and Light Transmission
The two most widely used techniques to measure the 
light intensity of LCUs have used radiometers or an 
integrating sphere (Spectroradiometer). More recently, a 
relatively new device, the Managing Accurate Resin Cur-
ing (MARC®) became popular in studies because it can 
measure light intensity and light transmission through a 
material to the bottom surface.  These three techniques will 
be discussed further.

Radiometers
Portable, hand-held dental radiometers are inexpensive 
and simple to use.  Radiometers have many disadvantages. 
Their accuracy was reported to be sensitive to the diam-
eter of the light guide tip [85,86]. In addition, they cannot 
continuously monitor the light output over the irradiation 
time [83]. Also, they only indicate the existence emitting 
tip irradiance and not the irradiance of the light cure unit 
when held at a distance from the radiometer [2].

In light of these limitations, their main use has been 
limited to the periodic monitoring of LCU performance 
on clinic [78,87].

Integrating Sphere (Spectroradiometers)
The Integrating Sphere measures all light irradiance output 
from LCU by defining the light emission area independent 
of the diameter of the light guide used and the light scat-
tering characteristic [2]. It is a ball-shape device, and the 
LCU activated inside this ball and measures all the light 
irradiance shining inside it regardless of the tip diameter, 
light divergence or scattering.

They are valid and used to determine precise light in-
tensity and these accurate measures are used mainly for 
research purposes. However, they are expensive, large and 
bulky which make them unsuitable for clinical use.

Table I. Recommended total energy required for sufficient curing in 
the literature

Author
Total  

energy
Thickness of 

material

Lee and Greene, 1994 >12 J/cm2 2 mm

Rueggeberg et al. 1994a 21-24 J/cm2 2 mm

Sobrinho et al. 2000 21-24 J/cm2 2 mm

Yap and Seneviratne, 2001 >12 J/cm2 2 mm

Yoon et al., 2002 8-16 J/cm2 2 mm

Fan et al. 2002 6-12 J/cm2 up to 18 1.5 mm

Emami and Soderholm, 2003 > 5-15 J/cm2 2 mm

Da Silva et al., 2008 > 17 J/cm2 2 mm

Calheiros et al,. 2008 > 24 J/cm2 2 mm

Howard et al. 2010 > 8 J/cm2 2 mm
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Managing Accurate Resin Curing (MARC®)
This is an analytic system which allows the amount, type 
and rate of energy and irradiance delivery to the top sur-
face of resin material specimens to be controlled and meas-
ures how much and what type of energy passes through to 
the bottom surface of the same increment of resin material 
[36].

MARC® uses integrated calibrated optic probes (energy 
sensors), connected to a laptop computer, to measure the 
irradiance, total energy, exposure time. These parameters 
are recorded by customized software on the computer and 
the time needed to deliver a specific total energy is calculat-
ed. In contrast to the Radiometer, it is possible to measure, 
and record, changes in light energy delivery in real-time 
throughout the duration of curing [2]. Its accuracy and 
reproducibility have been verified experimentally [36].

Two versions of this system are available. First is the 
MARC®-PS (Patient simulator), in which the sensors are 
embedded in plastic teeth in a mannequin head to 
s i m u l a t e  and obtain clinically relevant measurements.

The second is a bench-top style unit, the MARC®-RC 
(Resin calibrator), in which the sensor is located on the 
top surface of the unit. It is designed to allow testing of the 
light Transmission properties of a material in addition to 
the light energy of the LCU, but gives no simulation to the 
clinical environment.

The software measures spectral emission (nm) and the 
irradiance (mW/cm2) and calculates the total energy (J/
cm2) delivered to a simulated restoration based on precise 
curing time.
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