Atomoxetine and Duloxetine: Evaluation of a Potential Pharmacokinetic Drug-Drug Interaction

Ioana Todor1, Adina Popa2, Dana Muntean1, Maria Neag3, Ana-Maria Gheldiu4, Corina Briciu2*, Daniel Leucuta5, Laurian Vlase1

1. University of Medicine and Pharmacy "Iuliu Hatieganu", Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Cluj-Napoca, Romania
2. University of Medicine and Pharmacy "Iuliu Hatieganu", Faculty of Pharmacy, Department of Clinical Pharmacy, Cluj-Napoca, Romania
3. University of Medicine and Pharmacy "Iuliu Hatieganu", Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
4. University of Medicine and Pharmacy "Iuliu Hatieganu", Faculty of Pharmacy, Department of Pharmaceutical Botany, Cluj-Napoca, Romania
5. University of Medicine and Pharmacy "Iuliu Hatieganu", Faculty of Medicine, Department of Medical Informatics and Biostatistics, Cluj-Napoca, Romania

Objective: The present research aimed to investigate whether a pharmacokinetic drug interaction exists between atomoxetine, a substrate of CYP2D6 and duloxetine, an enzymatic inhibitor of the same metabolic pathway. Methods: Twenty-three healthy volunteers were enrolled in an open-label, non-randomized, sequential, 2-period clinical study. During the trial, they received a single dose of atomoxetine 25 mg (Period 1:Reference) followed by a combination of atomoxetine 25 mg and duloxetine 30 mg, after a pretreatment regimen with duloxetine 30-60 mg/day for 4 days (Period 2:Test). The pharmacokinetic parameters of atomoxetine and its main metabolite (4-hydroxyatomoxetine-O-glucuronide) were estimated using a non-compartmental approach and statistical tests were used to compare these parameters between study periods. Results: A total of 22 subjects, extensive metabolizers (EMs), were considered for the final report of the study findings. Duloxetine influenced the plasma concentration-time profile of both parent drug and its glucuronidated metabolite. The pharmacokinetic and statistical analysis revealed that pretreatment with the enzymatic inhibitor increased the mean atomoxetine AUC0–t (from 1151.19±686.52 to 1495.54±812.40 [ng*h/mL]) and AUC0–∞ (from 1229.15±751.04 to 1619.37±955.01 [ng*h/mL]) while k1/2 was decreased and the mean t1/2 was prolonged. Conclusions: Duloxetine had an impact on the pharmacokinetics of atomoxetine as it increased the exposure to the latter by ~30%. Although the magnitude of this pharmacokinetic interaction is rather small, a potential clinical relevance cannot be ruled out with certainty without further investigation.

Keywords: atomoxetine, 4-hydroxyatomoxetine-O-glucuronide, duloxetine, pharmacokinetic interaction

Introduction

Atomoxetine, a selective and potent norepinephrine reuptake inhibitor, is the first nonstimulant agent indicated for the management of attention deficit hyperactivity disorder (ADHD) in pediatric and adult patients [1–3]. With a rapid absorption from the gastrointestinal tract, it reaches peak plasma concentrations (Cmax) within 1–2 hours after oral intake [1,3]. The biotransformation process involves three metabolic pathways: aromatic ring-hydroxylation, benzylc hydroxylation and N-demethylation. The first one is the most important biotransformation step, is mainly mediated by CYP2D6 and leads to formation of 4-hydroxyatomoxetine. The latter is the primary and only active metabolite of atomoxetine and is equipotent to the parent drug as an inhibitor of the norepinephrine transporter. However, it is rapidly inactivated by glucuronidation and eliminated in the urine [3–5]. Given the genetic polymorphism of CYP2D6, the bioavailability of atomoxetine can vary between 63% in individuals considered extensive metabolizers (EMs) and 94% in those characterized as poor metabolizers (PMs); the mean plasma elimination half-life (t1/2) ranges between 5.2 hours in EMs and 21.6 hours in PMs [1,3]. Most of the oral dose (80-96%) is eliminated as glucuronidated metabolites via urinary excretion while less than 3% is excreted as unchanged drug [3,5].

Duloxetine, a serotonin-norepinephrine reuptake inhibitor, is widely recommended for the treatment of depression and generalized anxiety disorder. Apart from psychiatric conditions, it is also used to treat diabetic neuropathic pain, stress urinary incontinence and fibromyalgia [6,7]. Following oral administration, duloxetine reaches Cmax in about 6 hours and has a bioavailability that ranges from 32% to 80% [8]. With a t1/2 of approximately 10-12 hours, steady-state levels can be achieved within 3 days. This compound is not only a substrate, but also a moderate inhibitor of CYP2D6 [6,8].

Scientific sources report that a depressive disorder is 2 to 4 times more likely to appear for 30 to 60 % of adults diagnosed with ADHD [9]. Based on the recommendations of The Canadian Network for Mood and Anxiety Treatments (CANMAT) task force, pharmacotherapeutic agents for ADHD, including atomoxetine, can be considered as add-ons to antidepressant agents in patients diagnosed with mood disorders and comorbid ADHD [10]. The 2019 European Consensus Statement regarding the diagnosis and treatment of adult ADHD also underlines the fact that combined psychopharmacology may be fre-
quently needed due to a high rate of psychiatric comor-bidity [11]. Duloxetine could be considered a viable op-
tion in these circumstances as some preliminary promising
results reported that it can improve ADHD symptoms in
children, adolescents and adults [12,13]. Therefore, as the
data supports the hypothesis of a potential concomitant
administration of atomoxetine and duloxetine in clinical
practice and considering their common metabolic path-
way, the objective of this study was to investigate whether
the two drugs are involved in a metabolic drug interac-
tion, in healthy subjects.

Methods
Participants
The study population comprised Caucasian, healthy, non-
smoking men and women (age range: 18-55 years; body
mass index (BMI) ≤25 kg/m²). Exclusion criteria included
significant medical or medication history that can alter
drug response and identification of any abnormal find-
ings during various evaluation tests (clinical examination,
extrocardiogram (ECG) and blood tests (hematology -
complete blood count; biochemistry - sodium, potassium,
calculator, transaminases (aspartate transaminase (AST) and
alanine transaminase (ALT)), alkaline phosphatase (ALP),
gamma-glutamyl transferase (GGT), urea, glucose, uric
acid, cholesterol and triglycerides, creatinine, total bilir-
ubin and total serum protein levels, immunology and
serology tests - screening for pregnancy, human immuno-
deficiency virus (HIV), syphilis, hepatitis B and C). Those
with a history of alcohol or substance abuse and those
unable to comply with the study requirements were also
considered not eligible. Follow-up visits were performed
approximately 30 days after the end of the trial.

Ethical approval
The clinical trial was carried out in accordance with the
requirements of Good Clinical Practice (GCP) and the
ethical standards included in the 1964 Declaration of Hel-
sinki and its later amendments. Furthermore, an appropri-
ate ethics committee (Ethics Committee of the University
of Medicine and Pharmacy "Iuliu Hatieganu" from Cluj-
Napoca, Romania) reviewed and approved the study pro-
tocol. Each volunteer provided a written informed consent
before any study-related procedures were initiated.

Study design
The single-site study included 2 periods (Period 1:Reference
and Period 2:Test) and used a prospective, open-label
and sequential design, without randomization, to deter-
mine the effect of multiple-dose duloxetine on the phar-
macokinetics of atomoxetine. During Period 1, subjects re-
ceived a single oral dose of atomoxetine 25 mg (Strattera®,
atomoxetine hydrochloride 25 mg, capsules, manufactured
by Lilly SA, Madrid, Spain) and atomox-
etine 25 mg, after a pretreatment regimen with duloxetine
(Figure 1).

More specifically, before the concomitant administra-
tion of the two study drugs, a loading dose of duloxetine
(60 mg/day) was given to all subjects, for 2 days, in order
to speed up the process of reaching steady-state levels and
thus ensuring a maximum inhibitory effect. Afterwards,
the dose of the enzymatic inhibitor was reduced to 30 mg/
day (2 days) to lower the risk of adverse effects. Overall, the
chosen dosing regimen took into consideration the need to
rapidly achieve steady-state concentrations for duloxetine
while minimizing potential safety concerns and the im-
portance of using dosing patterns usually encountered in
clinical practice. The medicines were administered in the
morning, under fasting conditions and only with water (≥
150 mL). Volunteers were asked to abstain from consump-
tion of methylxanthine-containing beverages for 2 days
prior to the start of the clinical trial and throughout the
entire study period. Intake of any other drug except the
study medication and oral contraceptives was not permit-
ted during the course of the trial. Alcohol consumption
and smoking were also not allowed.

Blood sample collection and analysis
During both study periods, blood samples (5 ml) were col-
clected on Day 1 (Reference) and Day 6 (Test) into sodium
heparin-containing tubes, predose and 0.5, 1, 1.5, 2, 2.5,
3, 4, 6, 8, 10, 12, 24, 36 and 48 hours after oral admin-
istration of atomoxetine (Figure 1). Plasma samples were
obtained by centrifugation at 9000 rotations per minute
(rpm), for 6 minutes, and were stored at -20°C until their
analysis.

High-performance liquid chromatography/tandem
mass spectrometry assay (LC-MS) was used to determine
the plasma concentrations of atomoxetine and its main me-
tabolite. All LC-MS analyses were performed on an Agilent
1100 system equipped with a binary pump, autosampler
and thermostat (Agilent Technologies, Santa Clara, CA,
USA) and coupled with a Brucker Ion Trap SL (Brucker
Daltonics GmbH, Bremen, Germany). Chromatographic
separation was carried out on a Zorbax SB-C18, (Agil-
ent Technologies) column, 100 mm x 3.0 mm i.d, 3.5 µl.
The operating conditions included the following: mobile
phase (2 mM ammonium formate/acetonitrile mixture), flow rate (1 mL/min), gradient program (at start
→ 11% acetonitrile; after 2 minutes → 41% acetonitrile),
column temperature (48°C). Ionization was achieved by
using electrospray in the positive ion mode; the ions moni-
tored were m/z 256 for the parent drug (atomoxetine) and
m/z 448 for its main metabolite (4-hydroxyatomoxetine-
O-glucuronide). Atomoxetine retention time was 4.1
minutes while 2.2 minutes was the value corresponding
to 4-hydroxyatomoxetine-O-glucuronide. The parameters
used to validate the analytical method were linearity, speci-
ficity, intra- and inter-day precision, accuracy and analyte
recovery. The calibration curves were linear over a range of 8-600 ng/mL for both analytes; the correlation coefficients (mean ± standard deviation (SD), n = 5) were as follows: \(r=0.9951±0.0016 \) for atomoxetine, \(r=0.9982±0.0018 \) for 4-hydroxyatomoxetine-\(O \)-glucuronide. The intra- and inter-day precision value was <8.2% for the parent drug and <10.7% for the glucuronidated active metabolite whereas the accuracy yielded a percentage of less than 11.5% and less than 9.3%, respectively. Their average recoveries were in the range of 89-103% for atomoxetine and between 91 and 105% for 4-hydroxyatomoxetine-\(O \)-glucuronide.

Pharmacokinetic analysis

The pharmacokinetic analysis was performed using Phoenix WinNonlin® software (Pharsight Co., Mountain View, CA, USA), version 6.3. The non-compartmental method was employed to determine the pharmacokinetic parameters of atomoxetine and 4-hydroxyatomoxetine-\(O \)-glucuronide, corresponding to both study periods (Reference/Test). The maximum plasma concentration (\(C_{\text{max}} \), ng/mL) and time to reach \(C_{\text{max}} \) (\(t_{\text{max}} \), h) were obtained directly from the plasma concentration-time curves. The elimination half-life (\(t_{1/2} \), h) was calculated as \(0.693/k_{\text{el}} \), where \(k_{\text{el}} \) (h\(^{-1}\)), the elimina-
tion rate constant, was the slope of log-linear regression of the terminal phase of the concentration-time curve. The area under the concentration-time curve (AUC) from time 0 to the last quantifiable concentration (AUC_{0-t}, ng*h/mL) was obtained by using the linear trapezoidal method. Finally, the AUC extrapolated to infinity (AUC_{0-∞}, ng*h/mL) was estimated as AUC_{0-t}+C_0/k_{el}, where C_0 represents the last measurable concentration.

Phenotype analysis

CYP2D6 phenotype status was assessed for each subject by using the AUC_{0-∞} metabolic ratio (MR=AUC_{0-∞}:AUC_{0-∞}(atomoxetine/4-hydroxyatomoxetine-O-glucuronide). This calculus was done with the purpose of identifying all subjects characterized as potential PMs and subsequently ensuring their exclusion from the final analysis.

Statistical analysis

To compute the sample size for the differences between pharmacokinetic parameters, we used G*Power (Germany), version 3.1.9.4 [14]. The simulations aimed for a power of 90%, with a level of significance of 0.05, for paired t-test, and a two-tailed p-value. We checked for different scenarios with correlation coefficients ranging from 0.01 to 0.99. We started the simulations with data from articles comparing atomoxetine 25 mg with different inhibitors like fluvoxamine [15], bupropion [16], and paroxetine [17]. From these articles, we used the average of the means of the AUC_{0-∞}, the means of the standard deviations and the maximum of the standard deviations for worse scenarios. The majority of the simulations gave sample sizes ranged between 6 and 15, except the worse ones around 26. Thus, we aimed to enroll close to 25 subjects in our study.

Analysis of variance (ANOVA) with 2 sources of variation (subjects and study treatment) was conducted to detect differences between the pharmacokinetic parameters (except t_{max}) of atomoxetine and its active metabolite, in the presence and absence of duloxetine. (Test (vs) Reference). A second statistical method, the non-parametric assay known as the Friedman test, was used to compare the mean t_{max} values between study periods. The analyses were performed using Phoenix WinNonlin® software (Pharsight Co., Mountain View, CA, USA), version 6.3. Statistical significance was defined as p<0.05.

Bioequivalence analysis

This methodology was used to obtain preliminary data regarding potential clinical consequences attributed to concomitant atomoxetine and duloxetine intake. Schuurmann's two-sided test procedure, an equivalence testing approach, was used to calculate the 90% confidence intervals (90% CIs) of the ratio (Test/Reference) for C_{t_{max}}, AUC_{0-∞}, and AUC_{0-∞}(log transformed). In order to fulfill the bioequivalence criteria, the 90% CI values should be included within the acceptance interval of 0.80-1.25; for t_{max}, the range was expressed as untransformed data while the Friedman assay was used to establish significance level. The bioequivalence analysis followed the same protocol for both parent drug and glucuronidated active metabolite and was performed using Phoenix WinNonlin® software (Pharsight Co., Mountain View, CA, USA), version 6.3.

Results

Phenotypic assessment

An individual assessment of the MR=AUC_{0-∞} showed that the calculated values followed a normal distribution for 22 of the 23 volunteers initially included in the study (data not shown). Subsequently, the 22 subjects were considered to be EMs and were included in the final study sample. On the other hand, 1 subject proved to be an outlier and a potential PM which led to his exclusion from the final data analysis and interpretation.

Demographic data

The 22 Caucasian EMs included 15 men and 7 women with ages ranging between 20 and 30 years. Mean (±SD) BMI was 24.09±3.09 kg/m².

Pharmacokinetic and statistical analysis

The mean plasma concentration-time profiles of atomoxetine [A] and its main metabolite, 4-hydroxyatomoxetine-O-glucuronide [B], when administered alone or in combination with the enzymatic inhibitor, duloxetine, are presented in Figure 2.

The following tables include the mean pharmacokinetic parameters of atomoxetine (Table I) and its glucuronidated active metabolite (Table II), for each treatment phase, and the main findings of the statistical tests used for comparison (Test vs Reference).

Bioequivalence analysis

The 90% CIs for both parent drug and active metabolite and the bioequivalence results are presented in Table III.

Safety evaluation

No clinically significant changes in vital signs, ECG and laboratory parameters were found when the health status of each subject was reassessed after the end of the trial. Special attention was given to the evaluation of the liver function before and after the administration of the study drugs. Thus, the following mean values (±SD) for ALT and AST were recorded: 14.94±9.51 vs 13.30±10.02 UI/l (ALT) and 16.75±5.02 vs 16.53±5.11 UI/l (AST) for male subjects (normal values: 5-33 UI/l (ALT), 5-32 UI/l (AST)), 21.95±12.61 vs 22.97±12.61 vs 13.30±10.02 UI/l (ALT) and 21.95±9.51 vs 22.97±12.61 vs 16.53±5.11 UI/l (AST) for female subjects (normal values: 5-33 UI/l (ALT), 5-32 UI/l (AST)).

No serious adverse events were reported and all the volunteers completed the study.
ADHD is one of the most common childhood neurodevelopmental disorders, characterized by inattention, impulsivity and motor hyperactivity [18]. Nonetheless, the perception that this illness is restricted to children and adolescents is not accurate, as more than 50% of those diagnosed with ADHD can experience part of the symptoms in adulthood [19,20]. A meta-analysis conducted by Willcutt et al. reported a prevalence of 5.9 - 7.1% for ADHD in children and adolescents [21] whereas for the adult population, The World Mental Health Survey Initiative established a prevalence rate ranging from 1.2% to 7.3% in a study that included ten countries across Americas, Europe and Middle East [22]. As atomoxetine is one of the main agents used to treat ADHD [1] and data regarding its pharmacokinetic
interactions are limited, the present study considered providing new information regarding its safety profile by investigating a potential drug interaction with duloxetine. Since CYP2D6 is highly polymorphic and CYP2D6 inhibitors have little or no impact on atomoxetine pharmacokinetics in PMs [3], all data related to the subject identified as potential PM was removed from the final analysis in order to avoid any interference with the study outcomes. Besides the CYP2D6 PM status, two other potential confounding factors should be addressed. First, the use of hormonal steroid contraceptives can be problematic as the scientific literature provides evidence that compounds such as progesterone, pregnanolone, pregnenolone, 17β-estradiol, and 17β-hydroxyprogesterone are substrates and inhibitors of CYP2D6 [23]. However, even though the use of oral contraceptives was not considered exclusion criteria, none of the female subjects reported using this type of medication which disproves the hypothesis regarding a possible interference with the study results. Second, atomoxetine exposure can be increased when hepatic impairment is present [5] and, in some cases, duloxetine use was associated with hepatic injury [24]. However, in this study, no significant increases of liver transaminases were reported after treatment with the antidepressant and as a result, duloxetine-induced hepatotoxicity was also excluded as a potential interfering factor.

In the present research, the mean plasma concentration-time profile illustrated in Figure 2 (A) showed that a 4-day pretreatment with duloxetine produced a moderate increase in atomoxetine plasma concentrations. Contrarily, the mean plasma concentrations of the glucuronidated active metabolite suffered a slight decrease during the Test period (Figure 2 (B)) due to enzymatic inhibition, as the process slowed down the biotransformation of the substrate and the production of metabolite.

The pharmacokinetic analysis revealed that most of the calculated parameters for atomoxetine showed statistically significant changes between study periods (Table I). For example, the enzymatic inhibitor caused a 1.3-fold (~30%) increase in both AUC_{0-t} and AUC_{0-∞} for atomoxetine. The increased exposure can be interpreted as an indicator for the existence of a metabolic interaction between atomoxetine (CYP2D6 substrate) and duloxetine (CYP2D6 enzymatic inhibitor). Moreover, compared to Period 1, when atomoxetine was administered alone, during Period 2, after duloxetine pretreatment, a 26% decrease was reported for k_el value while atomoxetine t_{1/2} was prolonged by 37.5%. This suggests that, in this case, the clearance of the parent drug was reduced under the influence of the enzymatic inhibitor. As for C_{max} and t_{max}, no statistically significant differences were observed between study periods. In addition, the pharmacokinetic profile of the glucuronidated active metabolite (4-hydroxyatomoxetine-O-glucuronide) confirmed the drug-drug interaction. Duloxetine pretreatment significantly influenced three pharmacokinetic parameters of this compound as it decreased C_{max} and k_el by 9.7% and 15.3%, and increased the mean t_{1/2} value by ~15% (Table II).

Up until now, a relatively small number of studies provided information about the pharmacokinetic interactions of atomoxetine. Previous trials that evaluated the impact of other CYP2D6 inhibitors on atomoxetine pharmacokinetics concluded that paroxetine [25], bupropion [16] and fluvoxamine [15] increased the exposure to this agent by approximately 6.5-, 5.1- and 1.3-fold, respectively. In comparison with these antidepressants, duloxetine had only a modest impact on atomoxetine pharmacokinetics, comparable to fluvoxamine but much more reduced than paroxetine.

According to the bioequivalence analysis, the 90% CIs of t_{max}, AUC_{0-1} and AUC_{0-∞} corresponding to atomoxetine were not in the acceptable limit range (Table III), which could indicate a potential clinical relevance in this case. Even though bioequivalence was established for the rest of the pharmacokinetic parameters and the results revealed only a small magnitude for this pharmacokinetic interaction, any conclusion with regard to potential clinical outcomes cannot be drawn without additional investigations. Until then, caution is required whenever atomoxetine and duloxetine are concomitantly administered in clinical practice as the consequences of this pharmacokinetic interaction are not precisely known. In trials that included adult patients, the most frequently reported adverse events of atomoxetine were nausea, dry mouth and decreased appetite. Similar side effects (headache, abdominal pain and decreased appetite) were noted for children [26]. Several studies found slight increases in blood pressure and heart rate during treatment with atomoxetine which suggests that monitoring of cardiovascular parameters should be taken into consideration for safety purposes [27,28]. In a case report published in 2011, the addition of fluoxetine to the medication regimen of a 26 years patient who had been receiving atomoxetine for the past 6 years, led to an increased exposure to the ADHD agent, which caused the patient to experience cardiovascular side effects such as syncope, orthostatic hypotension and tachycardia [29]. Furthermore, whenever atomoxetine is coadministered with duloxetine, a potential pharmacodynamic interaction can also be present as the latter might cause additive increases in blood pressure [11].

Limitations
The absence of genotyping data that could have confirmed the phenotype analysis results can be considered as an important limitation of the present research. In addition, we acknowledge the fact that this study only focused on pharmacokinetic aspects and did not provide any useful information regarding the clinical relevance of this pharmacokinetic interaction.

Conclusion
Exposure to atomoxetine was increased after pretreatment with duloxetine. Thus, it can be concluded that the antide-
pressant has an impact on atomoxetine pharmacokinetics, but supplementary studies, preferably with a multiple-dose atomoxetine regimen, are needed in order to provide information with respect to any potential clinical consequences. Although the clinical relevance is not yet known, this research offers some insight that could be helpful to clinicians in the process of treatment selection in patients with ADHD and comorbid psychiatric disorders.

Conflicts of interest
None to declare.

Authors’ contribution
Ioana Todor (Data curation; Writing – original draft)
Adina Popa (Methodology; Writing – review & editing)
Dana Muntean (Data curation)
Maria Neag (Investigation; Supervision)
Ana-Maria Gheldiu (Data curation; Writing – review & editing)
Corina Briciu (Data curation; Formal analysis; Writing – original draft)
Daniel Leucuta (Formal analysis; Methodology; Writing – review & editing)
Laurian Vlase (Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Writing – review & editing)

References