Objective: Miconazole, an imidazole antifungal derivative, is a very hydrophobic compound, a major drawback in obtaining topical pharmaceutical formulations with optimal bioavailability. Cyclodextrins (CDs) may increase local drug delivery by enhancing the drug release and/or permeation. The aim of the study is the characterization of inclusion complexes between miconazole and different CD derivatives.
Methods: Several CD derivatives were tested in the experiments. The binary systems between miconazole and different CDs were prepared in 1:1 molar ratios by physical-mixture and kneading methods. Differential scanning calorimetry (DSC) and Fourier transformed-infrared spectroscopy (FT-IR) methods were used to characterize solid state interactions between miconazole and CDs in their binary systems.
Results: The FT-IR analysis suggests the formation of a new solid phase, indicating a molecular interaction between the components. The DSC analysis sustains the hypothesis of formation of partial inclusion complexes between miconazole nitrate and CD. Conclusion: The thermic behaviour of the complexes depends both on the preparation method and the composition of the products.
Characterization of Inclusion Complexes between Miconazole and Different Cyclodextrin Derivatives
DOI: 10.2478/amma-2018-0012
Keywords: miconazole, Fourier transform-infrared spectroscopy, cyclodextrins, complexation, differential scanning calorimetry
Full text: PDF