Objective: Antibacterial quinolones represent an important class of pharmaceutical compounds that are widely used in therapy. Analytical methods that rely on their property to absorb light in the UV range are commonly used for their analysis. In the current study we present an interpretation of the relationship between chemical structure – UV spectra based on the comparative examination of UV spectral behavior of the eighteen quinolone derivatives and four model compounds.
Methods: Eighteen quinolone derivatives and four model compounds were selected and their UV spectra were recorded in different solvents (methanol, 0.1M HCl, 0.1M NaOH).
Results: The studied compounds show three absorption maximum values located around 210-230 nm, 270-300 nm and 315-330 nm values. A general characteristic was observed as the absorption bands exhibited both hypsochrome and bathochrome shifts, by comparison in different solvents. Most commonly we observed a slight hypsochrome shift at acidic pH (protonated form prevails) and basic pH (anionic form prevails). The structural differences are reflected in changes of UV spectra only when there are auxochrom substituents or different basic substituents are present in the quinolones structure.
Conclusions: The correlations between the chemical structure of quinolone derivatives and their UV spectra using model compounds were established. This study provides useful information that can be used successfully in various UV spectrophotometric analysis methods or in more complex analytical methods using UV detection, and also in pharmacodynamic and kinetic studies.
Quinolone Antibacterials: Commentary and Considerations Regarding UV Spectra and Chemical Structure
DOI: 10.1515/amma-2015-0084
Full text: PDF