Objective: Transdermal therapeutic systems (TTSs) represent an intensely studied alternative to oral delivery of non-steroid anti-inflammatory drugs (NSAIDs) in the treatment of rheumatic diseases due to its ability of avoiding the side effects of the oral route. This study aims to present the evaluation of the mechanical properties of three NSAIDs (meloxicam, tenoxicam and indomethacin) individually included in four type of polymeric matrixes, as part of new formulations development process.
Methods: 12 products in form of TTS matrixes were prepared by solvent casting evaporation technique, using hydroxypropyl methylcellulose (HPMC 15000, HPMC E5) and/or ethylcellulose as matrix-forming polymers. Each of the resulted products was evaluated by determining the water vapor absorption, desorption or transmission in controlled atmosphere humidity (evaluation of porosity); the elongation capacity, tensile strength and bioadhesiveness (evaluation of mechanical properties).
Results: The analysis of three groups of the experimental data expressed as averages on each group was necessary, in order to identify the parameters which statistically are critically influenced by the ingredients associated in the TTSs matrix compositions. Analysis by normality tests, variance and correlation tests (Anova, Pearson) enabled evaluation of the effect of NSAID type vs. the effect of polymer matrix type on the parameters of the NSAID TTS matrix.
Conclusions: Meloxicam incorporated in the structure of HPMC 15000 polymeric matrix favors its viscoelastic structure. Ethylcellulose functions as plasticizer and supports the matrix bioadhesiveness. HPMC E5 does not meet the requirements for TTS preparation in the used experimental conditions.
Evaluation of Mechanical Properties of Nonsteroidal Anti-Inflammatory Matrix Type Transdermal Therapeutic Systems
DOI: 10.1515/amma-2017-0011
Keywords: transdermal therapeutic system, matrix type, non-steroid anti-inflammatory, mechanical properties, bioadhesiveness
Full text: PDF