Background: Quinolones are synthetic antibacterial agents, with a 4-oxo-1,4-dihydroquinolinic structure, which is based on the nalidixic acid model. The 4-oxo and 3-carboxyl groups confer quinolones excellent chelatation properties with metallic ions.
Aim: To highlight a few theories regarding the complexation phenomenon of quinolones.
Methods: Complexes with metallic ions have been characterized (stoichiometry, in vitro physical-chemicals properties, stability studies, and behavioral studies in different biological mediums).
Results: New availabilities have been identified: bioavailability of the complexed quinolones and formulation of new pharmaceutical products with a superior bioavailability and therapeutic effect; the antimicrobial activity of quinolone complexes; quinolone complexes as antitumor drugs with the aim of obtaining less toxic compounds; understanding the mechanism of action of quinolones, which is a challenge especially regarding their selectivity at the bacterial DNA level; development of new determination methods, based on the complexation of quinolones with metallic ions.
Conclusions: The 21st century may provide new useful therapeutic aspects on the basis of complexation between quinolones and metals.
Tag Archives: quinolones
Optimization of a Capillary Electrophoresis Method for the Separation of Quinolone Derivatives
Background: In this work the applicability of capillary zone electrophoresis for the separation of quinolones from different generations has been studied.
Objective: Our aim was to develop a capillary electrophoretic method for the simultaneous separation of four quinolones and also to optimize the analytical conditions.
Material and methods: Capillary electrophoresis (CE) is a family of related techniques that use narrow-bore fused-silica capillaries to perform high efficiency separations of both small and large molecules. For this we chose four quinolones: a naftiridine derivate (nalidixic acid), a pyrido-pyrimidine derivate (pipemidic acid) and two second generation fluoroquinolones with different structures (ciprofloxacin, ofloxacin).
Results: A fast and reliable method has been developed, using a separation buffer composed of 40 mM natrium tetraborate and 5% methanol as organic modifier, with whom we achieved the separation of the studied quinolones in less than 10 minutes.
Conclusions: CE proved to be an efficient tool in the separation of quinolones from different generations.