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Computer modeling of hippocampal CA1 
pyramidal Cells - a tool for in silico experiments
Metz Júlia, Szilágyi T*, Perian M, Orbán-Kis K

Department of Physiology, University of Medicine and Pharmacy of Tîrgu Mures, Romania

Objective. In silico experiments use mathematical models that capture as much as possible from the properties of the biological system 
under investigation. Our aim was to test the publicly available CA1 pyramidal cell models using the same simulation tasks, to compare them, 
and provide a systematic overview of their properties in order to improve the usefulness of these models as a tool for in silico experiments.
methods. Parameters describing the morphology of the cells and the implemented biophysical mechanisms were collected from the Mod-
elDB database of SenseLab Project. This data was analyzed in correlation with the purpose for which each particular model was developed. 
Multicompartmental simulations were run using the Neuron modeling platform. The properties of the action potentials generated in response 
to current injection, the firing pattern and the dendritic back-propagation were analyzed.
Results. The studied models were optimized to explore different physiological and pathological properties of the CA1 pyramidal cells. We 
could identify four broad classes of models focusing on: (i) initiation of the action potential, firing pattern and spike timing, (ii) dendritic back-
propagation, (iii) dendritic integration of synaptic inputs and (iv) neuronal network activity. Despite the large variation of the active conductances 
implemented in the models, the properties of the individual action potentials were quite similar, but even the most complex models could not 
reproduce all studied biological phenomena.
Conclusions. At the moment the “perfect” pyramidal cell model is not yet available. Our work, hopefully, will help finding the best model for 
each scientific question under investigation.
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Introduction
With the extremely fast development of the information 
technology in the last decades, a new research method 
became available for broad masses of neuroscientists. In 
silico experiments use mathematical models that capture 
as much as possible from the properties of the biological 
system under investigation. Realistic computer models are 
built using biological data, and the results of simulations 
are then compared with results of biological experiments 
[1]. In this way inconsistencies in the model can be identi-
fied, and in an iterative way the model can be refined and 
improved.

Until very recently, the computing power and informat-
ics tools required to build biologically realistic models were 
available only in specialized facilities. Today even desktop 
computers can run relatively complex neuronal simula-
tions, and the models can be validated against detailed data 
from biological experiments. Modern neuronal simulation 
environments hide the mathematical details from the user, 
therefore the researchers can focus their attention to the bi-
ological processes [2]. In this way the in silico experiments 
can spread from the high performance computational neu-
roscience centers to the ordinary experimental laboratories.

Sharing of computational neuroscience models is bene-
ficial for the whole scientific community because the com-
plexity of the models makes difficult to build completely 

new ones [3]. One published implementation can be used 
as it is for in silico experiments, or as a building block for 
modified versions by other researchers, or it can be the ori-
gin for other models with extended range of applicability.

The hippocampus plays a key role in spatial representa-
tion [4] and long term memory consolidation [5, 6]. This 
brain area is also important because it is affected by several 
diseases as epilepsy [7, 8], Alzheimer’s disease [9, 10] or 
schizophrenia [11]. Axons of the pyramidal cells in area 
CA1 constitute the main hippocampal output, therefore 
it is essential to understand the physiological role of these 
neurons under normal and pathological conditions. It is 
not surprising, therefore, that the CA1 pyramidal neuron 
is one of the most studied class of neuron in the brain. 
Many publicly available models of this cell type exist, but 
each of these is validated only against a certain biological 
dataset.

The aim of our work was to test the publicly available 
CA1 pyramidal cell models using the same simulation 
tasks, to compare them, and provide a systematic overview 
of their properties in order to improve the usefulness of 
these models as a tool for in silico experiments. 

methods
Our work intends to help using an in silico tool in the 
experimental laboratories. To be useful in neuroscience 
labs, the modeling environment have to support morpho-
logically detailed single cells containing active membrane 
conductances through ion channels, and also networks of 
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morphologically detailed cells. It also should run on all 
popular operating systems and should be distributed free 
of charge. The simulation environment which satisfies all 
these conditions, and also has the largest user base is the 
NEURON simulation platform (http://www.neuron.yale.
edu) [12], which as of May 2014, has more than 1450 
scientific articles and books reporting work that was done 
with it [13]. Based on the above considerations our study is 
restricted to models implemented in this simulation envi-
ronment. Detailed model descriptions were obtained from 
ModelDB (https://senselab.med.yale.edu/modeldb/)

Sixty CA1 pyramidal cell models were analyzed. Mod-
els without dendritic tree or with very simplified dendritic 
geometry were not included in our study. Parameters de-
scribing the morphology of the cells and the implemented 
biophysical mechanisms were collected for all models. In 
many cases we retrieved the used parameter set from the 
shared script, as it was not described in detail in the pub-
lished research article.

Regarding the morphology of the cells we recorded the 
number of apical and basal compartments, whether the 
axon was explicitly modeled, and the way the dendritic 
spines were taken into account. For the passive electrical 
properties the following were recorded: the membrane ca-
pacitance, the axial resistance, the specific membrane resist-
ance, the equilibrium potential of the passive conductance, 
the resting membrane potential and the simulated temper-
ature. The implemented ion channels and their maximum 
conductance were separately noted for the soma, dendrites 
and axon. Where applicable, the intracellular calcium han-
dling mechanisms were also taken into account.

The morphological and biophysical parameters and the 
purpose for which was developed each particular model 
were analyzed. Multicompartmental simulations were 
run for the most often used models. The active conduct-
ances were implemented by Hodgkin-Huxley type equa-
tions. Responses of model cells to current injection were 
recorded. The properties of the generated action potentials 
(threshold, amplitude, rate of depolarization, rate of repo-
larization, duration), the firing pattern (maximum firing 
frequency, spike frequency adaptation) and the dendritic 
back-propagation were analyzed.

Throughout our paper each model is referred to by 
the name of the first author of the research article using 
the model. If an author had more than one published 
model, these are distinguished by letters (e.g. Author_a, 
Author_b, etc.). 

Results
The studied models were optimized to explore different 
physiological and pathological properties of the CA1 py-
ramidal cells. We could identify four broad classes of models:

1. signal generation: initiation of the action potential, 
firing pattern and spike timing,

2. the back-propagation of the action potentials in the 
dendritic tree,

3. signal integration: dendritic integration of synaptic 
inputs, its dependence on membrane properties, ne-
uronal morphology and synaptic properties,

4. neuronal network activity: modeling physiological 
and pathological oscillations and their modulation, 
and the role of different cell types in shaping the ne-
twork activity.

1. models focusing on signal generation (firing proper-
ties) explored:

 – the relation between the voltage dependence of the 
sodium current and the properties of the action po-
tential (Royeck, [14]),

 – the role of the axonal M-type potassium current in 
determining the threshold of action potential initi-
ation and the resting membrane potential (Shah_a, 
[15]),

 – the mechanism of action of certain drugs (Ferrante 
[16]),

 – the effect of different mutations of the of the M-type 
K+-channel protein that decrease the channels voltage 
sensitivity (Miceli [17]),

 – the effects of different inactivation pathways of the 
A-type K+-channel (Fineberg [18]).

2. models focusing on the back-propagation of the ac-
tion potentials in the dendritic tree studied:

 – the modulation of the amplitude of the back-propa-
gated action potentials by the properties of the local 
voltage-dependent ion channels (especially the A-
type K+-channel) and external factors, as the timing 
of the synaptic inputs (Migliore_a [19]),

 – the effect of the morphology of the dendritic tree and 
the shape of the action potential on the efficiency of 
back-propagation (Golding_a [20]),

 – the influence of the local density of the A-type K+-
channels and the morphology of the dendritic tree 
on the back- and forward propagation of the action 
potential in the oblique apical dendrites (Migliore_d 
[21]),

3. models focusing on somato-dendritic signal integra-
tion explored:

 – the increased attenuation of the EPSPs (excitato-
ry postsynaptic potentials) in the apical dendrites 
(Golding_b [22]),

 – the effect of the perforant path and Schaffer collateral 
inputs, and the conditions under which the dendritic 
spikes initiated by perforant path inputs propagate to 
the cell body (Jarsky [23]),

 – the post-inhibitory rebound spiking that can be 
unmasked by the reduction of the A-type K+-current 
(Ascoli [24]),

 – the effect of dendritic distribution of A-type potas-
sium and h-conductances (hyperpolarization-acti-
vated) on the integration of subthreshold perforant 
path inputs (Migliore_b [25]),

 – the effect of Ih on the firing probability of a CA1 py-
ramidal cell receiving synaptic inputs activated with 
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different degree of synchronization and situated at 
different distances from the cell body (Migliore_c 
[26]),

 – the up- and down-regulation of Ih by potassium 
channels dependent on the Ih peak conductance 
(Migliore_e [27]),

 – the effect of certain anti-depressive drugs on the den-
dritic excitability (Poolos [28]),

 – the temporal and spatial requirements for the initiati-
on of dendritic spikes (Gasparini [29]),

 – the mechanisms that facilitate the propagation of the 
Ca2+ spikes (Ashhad [30]),

 – the relation between the synchronization of the 
back-propagating action potentials to the EPSPs and 
the induction of long-term potentiation (Watanabe 
[31]),

 – the frequency and the regularity of firing as a func-
tion of the frequency and spatial distribution of the 
synaptic inputs, neuronal morphology, active mem-
brane conductances, the synchrony and regularity of 
the synaptic inputs (Li [32]), the effect of the syn-

chrony of the synaptic input on the input-output re-
lation of the neuron (Li [33]),

 – the linear or non-linear synaptic integration that can 
explain the summation of the synaptic inputs, iden-
tification of the dendritic regions, which can operate 
as an independent functional subunit, and the input-
output functions of these subunits, which could best 
represent the integrative properties of the cell (Poirazi 
[34, 35]),

 – the progressive destruction of the theta resonance and 
the phase response on distal dendrites of the pyra-
midal cells during latent and chronic epilepsy, which 
correlates with the availability of the h-current (Mar-
celin [36]),

 – the effect of different forms of noise on the spatial 
and temporal integration of synaptic inputs (Graham 
[37]),

 – mapping realistic neurons into equivalent reduced 
models running faster while maintaining a very high 
accuracy of the membrane potential dynamics during 
synaptic inputs (Marasco [38])
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Table I. The morphology of the modeled neurons

No Author
Axon  

modeled
Number of dendritic  

compartments
Spines modeled

1 Magee (2000) [40] no 23 basal + 319 apical no

2 London (2001) [41] no 60 basal +127 apical 15000, 1 µm2 each, surface incorporated in dendrites

3 Migliore_a (1999) [19]

yes 127 apical + 60 basal
by doubling the capacitance  
and halving the resistance of  

the apical dendrites

4 Watanabe (2002) [31]

5 Poolos (2002) [28]

6 Migliore_b (2003) [25]

7 Migliore_c (2004) [26]

8 Gasparini (2004) [29]

9 Migliore_d (2005) [21] yes 119 apical + 52 basal no

10 Shah_a [15](2008) yes 70 basal + 69 apical no

11 Ferrante (2008) [16] yes 127 apical + 60 basal no

12 Marcelin (2009) [36] yes, 61 basal+ 95 apical no

13 Ascoli (2010) [24] yes 91 apical + 51 basal no

14 Li (2006, 2008) [32, 33] yes 149 apical + 44 basal no

15 Graham (2001) [37] no 136 apical + 56 basal
yes, every synapse on explicitly modeled spine, neck 

0.5 µm×0.1 µm, head 0.25 µm×0.5 µm

16 Golding_a (2001) [20] yes 155
by doubling the capacitance and halving the resistance of 

the apical dendrites if distance > 100 µ

17 Golding_b (2005) [22] no 3 morphologies: 216, 183, 158 membrane resistance and capacitance scaled by 1.2-3.3

18 Poirazi (2003) [34, 35] yes 119 apical + 59 basal no

19 Jarsky (2005) [23] yes 153
by doubling the capacitance and halving the resistance of 

the apical dendrites if distance > 300 µm
20 Royeck (2008) [14] yes 263 no

21 Migliore_e (2012) [27] yes 79 apical + 74 basal no

22 Miceli (2009) [17] yes 69 apical + 70 basal no

23 Fineberg (2012) [18] yes 127 apical + 60 basal
by doubling the capacitance and halving the resistance of 

the apical dendrites
24 Ashhad (2013) [30] yes 119 apical + 49 basal no

25 Berzhanskaya (2012) [43] no 152 apical+ 44 basal no

26 Marasco (2012) [38] yes 17 different morphologies no

27 Vladimirov_a (2012) [42] yes 139 apical +56 basal no

28 Vladimirov_b (2013) [45] yes 35 apical + 28 basal no

29 Hao (2009) [39] yes 127 apical + 60 basal no

30 Lee - deep (2014) [44] no 65 apical + 60 basal no

31 Lee - superficial (2014) [44] no 49 apical + 29 basal no
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 – a simple arithmetic rule for spatial summation of 
concurrent excitatory glutamatergic inputs and inhi-
bitory GABAergic inputs, defining a nonlinear term 
reflecting the strength of shunting effect (Hao [39]),

 – the factors contributing to the reduced variability of 
the somatic EPSPs depending on the localization of 
the synapses on passive dendrites (Magee [40]),

 – the effects of synaptic scaling under in vivo conditi-
ons in a passive neuronal model (London [41]).

4. Models focusing on network activity also used differ-
ent models of the CA1 pyramidal cells (Vladimirov_a[42]), 
(Berzhanskaya [43]), (Lee [44]), (Vladimirov_b [45]). (Ta-
ble I-V)

models with multiple applications
Some models were used in several different simulations. 
We further investigated in detail these models.

The Migliore_d [21] model with slight modifications 
was used by several authors, being a realistic model with 
very simple biophysical properties (only a sodium conduct-
ance for soma/dendrites and axon, an h-current and two 
potassium conductances are implemented). This model 
was used to demonstrate how the oblique apical dendrites 
of these neurons may bind different inputs to generate an 
output signal [46]. The possible role of the CA1 pyramidal 
neurons in the emergence of schizophrenic behavior was 
also investigated [47]. The model was also used to study 
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Table II. The passive properties of the model cells

No Author
membrane 

capacitance  
(μF/cm2)

Axial  
resistance  

(Ω∙cm)

Specific  
membrane  

resistance (Ω∙cm2)

equilibrium potential 
of the passive  

conductance (mV)

Resting  
membrane 

potential (mV)

Simulated  
temperature 

(°C)

1 Magee [40] 1 70 10000 -65 -65 6.3

2 London [41] 1 100
70
150

40000
10000
40000

0 0 6.3

3 Migliore_a [19] 1 150, a:50 28000 -65 -65 34

4 Watanabe [31] 1 150, a: 50 28000 -65 -65 34

5 Poolos [28] 1 150, a:50 28000 -65 -65 or -70 34

6 Migliore_b [25] 1 150 Δ, a: 50 28000& -65 -65 34

7 Migliore_c [26] 1 150, a: 50 28000 -65 -65 34

8 Gasparini [29] 1 150, a:50 28000 -65 -65 34

9 Migliore_d [21] 1 150, a:50 28000 -65 -65 34

10 Shah_a [15] 1 150, a: 50 28000 -65 -65 34

11 Ferrante [16] 1 150, a: 50 28000 -65 -65 35

12 Marcelin [36] 1 150, a: 50 28000 -70 -70 35

13 Ascoli [24] 3.2 50 14600 -62 -62 35

14 Li [32, 33] 1 50 28000 -65 -65 35

15 Graham [37] 1 200 30000 -65 -65 35

16 Golding_a [20] 0.75; 
a (myelin): 

0.075 

200 40000 -65 -65 35

17 Golding_b [22] 1.70944 139.09 40000# -65 -72 35

18 Poirazi [34, 35] 1 50-35# 200000-12000# to set RMP=-70 -70 34

19 Jarsky [23] 0.75;
a (myelin): 

0.04

200 40000 -66 -70 35

20 Royeck [14] 0.75 150 70000 -70 -70 30

21 Migliore_e [27] 1.9 80; a: 50 20000 -70 -70 35

22 Miceli [17] 0.75 500; a: 50 28000 -65 -65 35

23 Fineberg [18] 1, d: 2 150; a: 50 28000, d: 56000 -65 -65 34

24 Ashhad [30] 1 50-35$ 72000-30000$ -65 -65 34

25 Berzhanskaya [43] 1 80 28000 * -65 35

26 Marasco [38] 1 150; a: 50 28000 -65 -65 35

27 Vladimirov_a [42] 0.9 200; a 100 s, d: 50000, a: 1000 -70 -65 6.5

28 Vladimirov_b [45] 0.75 200, a: 100 s, d: 50000, a: 1000 -65 -70 6.5

29 Hao [39] 1 80 6000$ -70 -70 34

30 Lee – deep [44] 1 295 24150 -104 -104 34

31 Lee – superficial [44] 1 295 32900 -104 -104 34

s: soma, d: dendrites, a: axon     $ exponentially decreasing in apical trunk with distance from soma
RMP: resting membrane potential     Δ linearly increasing with distance from soma
* the resting membrane potential of every compartment is 0  & linearly decreasing with distance from soma
# varies sigmoidally with distance from soma
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Table III. Active conductances implemented in the soma of the model cells and their maximum conductance (mS/cm2)
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1 Magee [40] - - - - - - - - - - - - - -
2 London [41] - - - - - - - - - - - - - -
3 Migliore_a [19] - 32 - - 10 48 - - - - - - - -
4 Watanabe [31] - 32 - - 10 48 - - - - - - - -
5 Poolos [28] - 32 - 0.6 3 8 - - - - - - - -
6 Migliore_b [25] - 32 - 0.5 3 48 - - - - - - - -
7 Migliore_c [26] - 30 - 0.5 1 10 - - - - - - - -
8 Gasparini [29] - 30 - 0.05 5 22 - - - - - - - -
9 Migliore_d [21] - 25 - 0.05 10 10 - - - - - - - -
10 Shah_a [15] - 135 - 0 180 40 20 0.01 - 0.1 - - - -
11 Ferrante [16] - 30 - 0.06 1 10 - - - - - - - -
12 Marcelin [36] - - - 0.05 - - - - - - - - - -
13 Ascoli [24] - 24 - 0.02 8 4 - - - - - - - -
14 Li [32, 33] - 20 - 0.05 10 25 - - - - - - - -

15 Graham [37]

0.
00

5

- - 0.03 - 0.2 - - - 1 - - - -

16 Golding_a [20] 42 - - - 40 100 - - - - - - - -
17 Golding_b [22] - - - 1.94 - - - - - - - - - -

18 Poirazi [34, 35] - 7 -

18
.7

2

1.4 7.5 60
sl

ow
: 0

.5
, 

m
ed

: 9
0.

75

- 0.05 7 3 - -

19 Jarsky [23] - 40 - - 40 40 - - - - - - - -
20 Royeck [14] 1 100 0.75 0.05 5 5 2 0.7 10 1.1∙10-5 6.62∙10-5 4.4∙10-5 - 15.4∙10-5

21 Migliore_e [27] - 20 - 0.06 10 15 10 - - - - - - -
22 Miceli [17] - 135 - 0.01 60 30 14 0.01 - 1 - - - -
23 Fineberg [18] - 32 - - 10 144 - - - - - - - -
24 Ashhad [30] - 90 - - 3 22 - - - 1 0.632 - - -
25 Berzhanskaya [43] - 20 - 0.05 10 25 - - - - - - - -
26 Marasco [38] - 25 - 0.05 10 10 - - - - - - - -
27 Vladimirov_a [42] - 200 - - 170 200 10 0.2 16 - 4 - - -
28 Vladimirov_b [45] - 70 - - 170 0.5 - 0.8 20 - 1 - - -
29 Hao [39] - 30 - 0.02 5 5 - - - - - - - -
30 Lee – deep [44] - 337.5 - 0.038 90* 10.8 - 70 30 - 11.25 - - -

31
Lee – superficial 

[44]
- 264 - 0.05 30* 6 - 70 1 - 7.5 - - -

* a slow delayed rectifier conductance also implemented

Table IV. Active conductances implemented in the axon of the model cells and their maximum conductance (mS/cm2)

Author
persis-

tent Na+
transient Na+

Na+ with 
intermediate 
inactivation

delayed rectifier 
K+

A type K+ m type K+

1 Magee [40] no axon
2 London [41] no axon
3 Migliore_a [19] 64 10 96 -
4 Watanabe [31] - 64 - 10 96 -
5 Poolos [28] - 64 - 3 16 -
6 Migliore_b [25] 64 10 96 -
7 Migliore_c [26] 60 1 2 -
8 Gasparini [29] - 60 - 5 44 -
9 Migliore_d [27] - 50 - 10 30 -

10 Shah_a [15] - 135 - 60 40 20
11 Ferrante [16] - 60 - 1 2 -
12 Marcelin [36] passive
13 Ascoli [24] - 120 - 40 20 -
14 Li [32, 33] 40 10 5 -
15 Graham [37] - - - - - -

16 Golding_a [20] -
hillock, AIS, internodal: 42, 

node:50000
- 40

hillock, AIS: 100, inter-
nodal, node: 20

-

17 Golding_b [22] - - - - - -
18 Poirazi [34, 35] - 100 - 20 30 -

19 Jarsky [23] -
hillock, AIS, intenodal:40, 

nod:30000
- 40

hillock, AIS: 48, inter-
nodal, nod:9.6

-

20 Royeck [14] AIS: 0.5 AIS: 20 – 10000*, axon: 80 AIS: 0.5 AIS: 20, axon: 25 AIS, axon: 20 AIS, axon: 4
21 Migliore_e [27] - 100 - 50 75 10
22 Miceli [17] - 135 - 60 30 42
23 Fineberg [18] - 64 - 10 28.8 -
24 Ashhad [30] - 450 - 3 - -
25 Berzhanskaya [43] no axon 
26 Marasco [38] - 50 - 10 30 -
27 Vladimirov_a [42] - 300 - 450 0.6 40
28 Vladimirov_b [45] - 300 - 400 - -
29 Hao [39] - 6 - 5 5 -
30 Lee – deep [44] - - - - - -
31 Lee – superficial [44] - - - - - -

AIS – axon initial segment  * different values in the simulations
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Table V. Active conductances implemented in the dendrites of the model cells and their maximum conductance (mS/cm2)
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1 Magee [40] - - - - - - - - - - - -
2 London [41] - - - - - - - - - - - -

3
Migliore_a 

[19]
- 32 - 10 48*+ - - - - - - -

4
Watanabe 

[31]
- 32 - 10 48*+ - - - - - - -

5 Poolos [28] - 32 0.6# 3# 8+ - - - - - - -

6
Migliore_b 

[25]
- 32 0.5 Δ 10 48*+ - - - - - - -

7
Migliore_c 

[26]
- 32 0.05Δ 1 10 - - - - - - -

8 Gasparini [29] - 30Δ 0.05Δ 5 22*+ - - - - - - -

9
Migliore_d 

[21]
- 25 0.05Δ 10 30*+ - - - - - - -

10 Shah_a [15] -
a: 45, 
b:0

a: 0.05Δ a: 60 a: 40*+ - 0.01 - 0.1 -    

11 Ferrante [16] - 30 0.06 Δ b:1
a:

10*+b:10
- - - - - - -

12 Marcelin [36] - - 0.05& - - - - - - - - -

13 Ascoli [24] - 24 0.02‡ 8
a: 10*+b: 

10
- - - - - - -

14 Li [32, 33] - 20 0.05Δ 10 10*+ - - - - - - -
15 Graham [37] 5∙10-3 - 0.03+ - 0.2+ - - - 1 - -  

16
Golding_a 

[20]
- 42 - 40 100*+ - - - - - - -

17
Golding_b 

[22]
- - 1.94‡ - - - - - - - - -

18
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0.4 7 18.72‡ 0.86 7.5*+
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24 Ashhad [30] - a: 90 - -
b: 22, a: 
22*&, o«

- - -
a: 0.1+
b: 0.1
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- -

25
Berzhans-
kaya [43]

- 20 0.05Δ 10 25*+ - - - - - - -

26 Marasco [38] - 25 0.05Δ 10
b: 30, a: 

30*+
- - - - - - -

27
Vladimirov_a 

[42]
- 30 - 75 8 20 0.2 16 - 4 - -

28
Vladimirov_b 

[45]
-

b: 10, a: 
30

-

b
: 1

5,
a:

 2
0

0.5 - 0.8 12-8-4 - 1

29 Hao [39] - 30 0.02∞ 5 5*& - - - - - - -

30
Lee – deep 

[44]
- - 0.38# 90§ 10.8*$ - 70 30 50@ 11.25 - -

31
Lee – superfi-

cial [44]
- - 0.05# 30§ 6*$ - 70 10 50@ 7.5

a – apical dendritic tree, o – oblique dendrites, b – basal dendritic tree
+ linearly increasing with the distance of the compartment from the cell body (d) with d/100 
$ idem with d/200 
# idem with 1,5d/100
Δ idem with 3d/100
& idem with 5d/100
‡ increases exponentially in the apical trunk
« 3 times as at branching point
∞ increases exponentially with distance from soma
@ decreases exponentially with distance from soma
* the A type K+ conductance is described with different equations for the proximal (distance from soma less then 100µm) and distal dendritic tree 
§ also contains a slow component for KDR current, with the same conductance
For AHP potassium current: s – for the current responsible for slow AHP, m – for the current responsible for medium AHP  
If several values are indicated, the change is linear along the dendritic tree (proximal → distal)
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the pathomechanism of Alzheihmer’s disease [48, 49], to 
calculate the magnetic field produced by the neuronal cur-
rents, and to estimate the phase and magnitude of the MR 
signals [50], to investigate the possible cognitive effects of 
low frequency external electric fields, such as those gen-
erated by power lines [51], to map realistic neurons into 
equivalent reduced models [38].

Poirazi [34, 35] developed a very complex, morpho-
logically detailed model of a CA1 pyramidal cell with 17 
types of ion channels, most of them distributed non-uni-
formly along the somato-dendritic axis. The authors origi-
nally studied the linear and non-linear synaptic integra-
tion, but being a very detailed model, it was suitable to 
study dendritic integration by several other authors, e.g. 
the thin dendritic branches as a separate integration level 
of the synaptic inputs, with sigmoidal summation of the 
neighboring inputs [52], the influence of synchronization 
and different spatial distribution of synaptic inputs on the 
proximal and distal dendrites on the information content 
of the neuronal response [53], complex (non-linear) as op-
posed to a passive (linear) information processing [54], the 
distance-dependent synaptic scaling [55], depolarization 
block [56]. This model was also used to study the altera-
tions of the CA1 pyramidal cells in different pathological 
conditions, e.g. the amyloid-β-induced enhancement of 
release probability of CA3-CA1 synapses, and alteration of 
synaptic integration for inputs in the theta and gamma fre-
quency range [57], aging-induced alterations in calcium-
dependent membrane mechanisms [58].

Shah_a [15] model includes similar sodium, delayed 
rectifier and A-type conductances as the models developed 
by Migliore, but a h-current with different kinetics, and 
also a low-threshold Ca2+ conductance, a Ca-dependent K+ 
conductance, and a simple Ca2+ extrusion mechanism is 
included. Initially the role of the axonal M-type potassium 
current in determining the firing properties of the neuron 
was explored, but later the effect of the same current on 
the integration of EPSPs was also studied [59]. This model 
was also used to determine the ion channel properties and 
kinetics needed to reproduce the experimentally observed 
depolarization block [56].

Royeck [14] developed a morphologically realistic 
model that contains a large number of conductances with 
complex Ca2+-dynamics, most of them being described by 
different equations from the previous models. The authors 
studied the relation between the voltage dependence of the 
sodium current and the properties of the action potential, 
respectively the repetitive discharge properties of CA1 neu-

rons. The same model was used to investigate the effect of 
a mutation of the β subunit of the sodium channel that 
causes heat-sensitive increase of the neuronal excitability 
[60], and the effect of carbamazepine on fast transient so-
dium currents, which mediate the fast upstroke of action 
potentials; and low-voltage-activated persistent sodium 
currents that contribute to subthreshold excitation [61].

electrophysiological properties
Because there is a complex interaction between the pas-
sive and active membrane properties and the geometry of 
the model cell, the electrophysiological properties cannot 
be predicted even from the detailed parameter set of the 
model, thus these should be tested directly.

We studied in detail the above presented, most fre-
quently used models. These differed in the passive and ac-
tive properties and the geometry of the dendritic tree, but 
also had some similar features. All simulated models in-
cluded an active axon with detailed geometry, but the den-
dritic spines were not considered in any of these models. 
The parameters which describe the passive properties of the 
models had constant values in three models whereas in the 
Poirazi model there was a sigmoidal variation of the axial 
resistance and the specific membrane resistance. (Table VI)

Most of the active conductances implemented in the 
simulated models were described by different equations, 
except the A-type K+-conductance. Poirazi and Royeck im-
plemented a detailed model of Ca2+ dynamics, the Shah 
model contains only a T-type Ca2+-conductance, whereas 
in the Migliore model only Na+, delayed rectifier, A-type 
K+ and h-conductances are inserted.

Despite the large variation of the active conductances 
implemented in the models, the properties of the action 
potentials were quite similar: there were no important dif-
ferences in the action potential threshold and amplitude. 
Nevertheless, the rate of depolarization was much slower in 
the Shah model, and the duration of the action potential 
was longer for the Poirazi model. (Table VII, Figure 1)

The tested models had different firing properties and 
none of them could reproduce all of the studied phenom-
ena. The maximum firing rate of the models was close to 
the experimentally described values, except for the Shah 
model, which had significantly lower firing rate. The train 
of the action potentials obtained by maximum stimulus 
intensity showed frequency adaptation only in case of the 
Shah and Royeck models. The decrease of the firing rate 
during a long current impulse is considered to be the effect 
of the slow activation of the M-type and Ca2+-dependent 

Table VI. The properties of the action potentials generated by dif-
ferent models.

migliore poirazi Shah Royeck

Threshold (mV) -33 -43 -43 -44

Amplitude (mV) 92 88 91 117

Rate of depolarization (V/s) 199.69 172.80 105.16 332.29

Rate of repolarization (V/s) -40.27 -33.66 -57.94 -56.96

Duration (ms) 1.1 2 1.1 1.15

Table VII. The firing pattern and the back-propagation of the action 
potentials in the apical dendrites of the modeled neurons

migliore b poirazi Shah Royeck 

Maximum firing frequency 111 127 35 127

Frequency adaptation no no yes yes

Progressive decrease in 
amplitude of the back-prop-

agated action potentials 

yes yes no no
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(AHP) K+-conductances. These conductances were imple-
mented also in the Poirazi model, but the model’s firing 
did not adapt during a long train. As expected, the Miglio-
re model, in which these conductances were not imple-
mented, did not show the adaptation phenomenon. 

Regarding the back-propagation of the action poten-
tials, a pronounced decrease of action potential amplitude 

along the dendritic tree was found in all models except 
the Shah model. This non-linear decrease was caused by 
the non-uniform distribution of the dendritic A-type K+-
conductances. This conductance was described by the same 
equation in all models, with linear increase along the apical 
dendritic tree, although the value of the maximum con-
ductance differed. The non-uniform passive membrane 
properties of the dendrites in the Poirazi model could also 
contribute to this effect. (Figure 2)

In CA1 pyramidal neurons the back-propagation of the 
action potentials in the dendritic tree is an active process. 
During repetitive firing the amplitude of the action po-
tentials decreases because of the slow inactivation of the 
Na+-channels. The decrease of the amplitude of the back-
propagating action potentials was observed only in the 
Poirazi model, although the dendritic sodium conductance 
showed slow inactivation in all models.

Discussion
The models used to investigate the back-propagation of 
the action potentials in the dendritic tree are among the 
simplest, containing only a few active conductances. All 
models contain sodium, delayed rectifier and A-type potas-
sium conductances implemented in all compartments. The 

Fig. 2. The firing properties and the back-propagation of the action potentials in the apical dendrites of the modeled neurons. Simulated 
membrane potential recorded at: A: Poirazi, a: soma, b: 140  μm, c: 250  μm, d: 310  μm from the soma in stratum radiatum; B: Migliore_d, 
a: soma, b: 100  μm, c: 280  μm, d: 460  μm from the soma; C: Shah, a: soma, b: 155  μm, c: 300  μm, d: 430  μm from the soma; D: Royeck, 
a: soma, b: 115  μm, c: 190  μm, d: 250  μm from the soma. Bottom trace on each panel indicates the duration of the current injection. All 
figures are on the same scale.

Fig. 1. The action potentials of different models.  
a: Shah, b: Royeck, c: Migliore_d, d: Poirazi
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Ca2+-dynamics is not simulated in any of the models. The 
A-type potassium conductance implemented in the models 
has similar distribution (linear increase with distance from 
soma along the apical dendritic tree) and kinetics (differ-
ent for the proximal and distal dendrites, the current in 
the distal dendrites activates at a more negative membrane 
potential). In the Migliore_d model a h-type conductance 
is also implemented with a linear increase along the den-
dritic tree with distance from soma. The Migliore_d model 
was also used to investigate dendritic integration in physi-
ological and pathological conditions. Because of its relative 
simplicity, this model, which was validated in a large num-
ber of different studies, is especially suitable to study the 
interactions between the neuronal activity and the external 
electrical or magnetic field.

The models focusing on signal generation (firing prop-
erties) are more complex. Most of these models contain 
besides the sodium, delayed rectifier and A-type potassium 
conductances also M-type K+, AHP K+ and at least one 
Ca2+ conductance to simulate the effect of Ca2+-dependant 
K+-conductances on the firing rate. The models that do 
not contain Ca2+-dependant conductances investigate the 
effect of several drugs modulating the synaptic transmis-
sion or the effect of ion channels described by different 
kinetics on the firing properties. We tested two of these 
models and they both show the experimentally described 
spike frequency adaptation, but the progressive decrease of 
back-propagating action potentials and a high frequency 
(around 100 Hz) action potential train is shown only by 
the Royeck model. 

Most models are developed to study the somato-den-
dritic signal integration. Two of these studies investigate 
the synaptic scaling of excitatory synaptic inputs in a pas-
sive model, in two other models only an h-current is imple-
mented. The dynamics of the Ca2+-ions is not simulated in 
most of the remaining models. Only two models contain 
several Ca2+-conductances with non-uniform distribution 
in the dendritic tree. One of these models (Ashhad) was 
developed to study the Ca2+-spikes, the other is the Poira-
zi model, the most complex of the studied models. This 
model was developed to study the dendritic integration of 
excitatory synaptic inputs. The Poirazi model was used in 
several studies all focusing on untangling the mechanisms 
of dendritic integration. Although this model contains the 
most diverse conductances, during maximum current in-
jection does not present the spike frequency adaptation.

Our results show that simpler models still exhibit many 
of the important features of CA1 pyramidal neurons, thus 
these models can be used to simulate the pathomechanism 
of different diseases that alter neuronal excitability; and be-
cause of the relatively low computational costs they can 
be also used for modeling clusters of similarly functioning 
cells. These models can also be used in studies that focus 
on a specific modification – a drug effect or a mutation af-
fecting the kinetics of an ion channel.

If the initiation and propagation of dendritic spikes is 
investigated, the model should reproduce the dynamics 
of Ca2+-ions in the dendrites in a complex manner, like 
the models developed by Ashhad or Poirazi. The Poirazi 
model is best suited to simulate the information process-
ing in thin dendritic branches or the synaptic integration 
of a large number of synaptic inputs with varying spatio-
temporal distribution. 

Conclusion
Each studied model was optimized to explore particular 

physiological and/or pathological properties of the CA1 
pyramidal cells. Not even the most complex models could 
reproduce all studied biological phenomena, therefore we 
conclude, that at the moment the “perfect” pyramidal cell 
model is not yet available. Further validation against bio-
logical datasets is necessary, and the models still have to be 
tuned to eliminate the identified inconsistencies. 

As a general purpose model cell does not exist yet, the 
researchers have to choose which model is the most suit-
able for the scientific question under investigation. Our 
work, hopefully, will help finding the best model for each 
in silico experiment.
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