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Objective: The purpose of this experiment was to determine the long-term effect of stem cell stimulator Olimpiq® StemXCell treatment on 
retinal vascular permeability and breakdown of the blood-retinal barrier (BRB) in alloxan-induced diabetic rats. 
Methods: Male Whistar rats were divided into three groups. Two groups received a single intraperitoneal injection of Alloxan (125 mg/kg) – a 
specifically pancreatic beta cell-toxic substance, and the other control group received vehicle. The Alloxan-induced diabetic rats were treated 
with Olimpiq® StemXCell SL for 4 weeks, whereas controls were fed with standard lab chow. Permeability of blood-retinal barrier was mea-
sured by the extravasation of fluorescein isothiocyanate labeled bovine serum albimin (FITC-BSA).
Results: Six weeks subsequently to Alloxan treatment, a significantly elevated tissue fluorescence, vascular leakage, and BRB breakdown 
could be demonstrated in the diabetic group, compared to the non-diabetic group. Olimpiq® StemXCell SL treatment significantly decreased 
the BRB breakdown, tissue fluorescence, and vascular leakage, compared with the control, non-treated group. Long-term Olimpiq ® StemX-
Cell SL treatment significantly decreased tissue fluorescence, vascular leakage, and the BRB breakdown. The mechanism for these effects 
may involve retinal vascular regeneration induced by stem cell stimulation. Blood glucose values were decreasing gradually, without significant 
differences between groups, therefore insulin secreting beta cell regeneration could not be demonstrated. 
Conclusions: The results suggest that Olimpiq® StemXCell SL would be useful for treatment of ocular diseases associated with BRB leakage, 
such as diabetic macular edema and retinopathy.
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Introduction
Diabetes mellitus (DM) is currently a major global epi-
demiological problem due to the high number of people 
involved: approximately 7,000,000 new patients are regis-
tered annually worldwide [1].

At this point, worldwide about 246 million diabetic pa-
tients are diagnosed, mostly suffering from type 2 diabetes. 
By 2025 this number is expected to grow to 380 million, 
representing 7.1% of the adult population of the planet.

In Romania, the prevalence of diabetes reaches 4.2% of 
the total population. According to the Eurodiab study, the 
incidence of diabetes for the age group of 0–14 years in our 
country, is approximately 3/100.000 people. According to 
recorded data provided by the Diabetes Mellitus Center in 
Mures County, the number of diabetic patients are (until 
2009) [2]:

 f 8794 patients with DM;
 f 1271 insulin dependent diabetes (type I DM);
 f 7523 insulin independent diabetes (type ll DM).
These data suggest that diabetes and its complications 

demand both more effective and less expensive biological 
treatments.

Breakdown of the blood-retinal barrier (BRB) is the 
most characteristic change in diabetic retinopathy, and is 
responsible for macular oedema, the most common cause 
of visual morbidity in diabetic patients [3]. 

The BRB is located on two levels, forming an outer bar-
rier in the retinal pigment epithelium and an inner barrier in 

the endothelial membrane of the retinal vessels. Both these 
membranes have tight, “non-leaky” type junctions, without 
fenestrations however the thyroid and kidney vessels have 
very thin endothelial cells with numerous cytoplasmic dis-
continuities and the basement membrane is also very thin 
and irregular. The structure of the retinal capillaries is very 
similar to that of the brain capillaries [4,5]. 

BRB breakdown has been demonstrated by fluorescein 
angiography and vitreous fluorophotometry in diabetic 
humans [6,7] and rats [8]. Vinores et al. [9,10] reported 
that immunohistochemical staining for albumin was use-
ful in localising BRB breakdown in human diabetic reti-
nas because, as albumin is one of the serum proteins, its 
extravascular localisation signifies breakdown of the BRB 
[11,12].

Recent studies in streptozotocin (STZ) diabetic rats 
have shown that the initial BRB breakdown is associated 
with increase in expression of both the endothelial and 
neuronal nitric oxide synthase (eNOS and nNOS) as well 
as with increases in VEGF expression [13,14,15]. 

However, the mechanisms by which diabetes increases 
VEGF expression and causes BRB breakdown are not yet 
understood.

Recently, promising results have been published on the 
beneficial effect of G-CSF (granulocyte colony-stimulating 
factor) or stem cell factor-induced increase in the number 
of circulating stem cells in mice or in human patients with 
myocardial infarction [16]. Cytokine-induced stem cell 
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mobilization has been found to be beneficial in other con-
ditions like: kidney failure [17], bone fracture [18], cer-
ebral ischemia [19], and various neurological diseases [20].

Bone marrow stem cells have been found to differen-
tiate into several cell types like cardiac muscle cells [21], 
neurons, [22], liver cells [23] etc. Regeneration of the pan-
creas and formation of beta-cells after local or systemic 
application of stem cells is also under investigation [24]. 
There haven’t been published any results yet, on retinal re-
generative effect of stem-cell stimulation.

Several authors have hypothesized that modulation of 
stem cell number or their properties represents the back-
ground mechanism of the effect of diet on aging or car-
cinogenesis [25,26,27]. 

A complex mixture (Olimpiq® StemXCell [Crystal In-
stitute Ltd., Eger, Hungary], a dietary supplement) was 
found to statistically significantly increase the number of 
circulating CD34+ cells [28]. There is also evidence of 
certain benefits in functional improvement of the pan-
creas in beta-cell destruction-based experimental diabetes 
[29,30,31].

Several studies confirm that stem cell mobilization or 
stem cell production enhancement through dietary means 
is a realistic possibility to achieve health benefits. It also 
seems very reasonable that chronic, moderate stimulation 
of stem cell production will result in similar effects and 
might be preventive against several chronic degenerative 
diseases, in accordance with the experience of traditional 
herbal medicine [29].

Olimpiq® StemXCell SL is a product variant of Ol-
impiq® StemXcell, specifically designed for diabetes mel-
litus treatment. Its active components seem to have a role 
in improving the lives of people with diabetes and ensure 
balanced blood sugar levels, preventing also the occurrence 
of complications in both types of diabetes, improving the 
body's regenerative capacity [24,26,29,32,33,34].

Material and methods 
Male Whistar rats (250–300 g) were divided into three 
groups with similar distributions of blood glucose and 
body weight. Two groups received a single intraperitoneal 
injection of Alloxan (125 mg/kg) – a specifically pan-
creatic beta cell-toxic substance (Alloxan monohydrate, 
Alfa Aesar GmbH & Co KG), and the remaining control 
group received vehicle. After 24 hours, blood sugar was 
measured and rats were considered to be diabetic when 
the fasting blood sugar exceeded 13.7 mmol/l. Blood 
glucose was measured weekly using an automated blood-
glucometer (Accu-Chek® – Roche, Darmstadt, Germany) 
with blood obtained by tail vein puncture. Bodyweight 
was also measured at the beginning and end of the experi-
ment.

Drug treatment administered via food intake was initi-
ated 2 weeks later. The Alloxan-induced diabetic rats were 
treated with Olimpiq® StemXCell (Crystal Institute Ltd., 
Eger, Hungary) for 4 weeks (7.14 mg/kg/day dose, calcu-

lated for each rat, based on the recommendation of the 
producer company), whereas controls were fed with stan-
dard lab chow. 

Blood glucose (weekly), weight and fluorescein extrava-
sation were then measured.

Permeability of blood-retinal barrier was measured by 
the method described by Antonetti et al. [11], partially 
modified.

After general anesthesia with pentobarbital, 100 mg/
kg bovine serum albumin labeled with fluorescein isothio-
cyanate (FITC-BSA – Sigma-Aldrich) was injected via the 
tail vein. After 10 minutes, the animals were decapitated, 
and after eye enucleation (n = 3×1o) retinal tissue sampling 
was carried out. At the time of death 3 ml of blood was 
collected in EDTA tubes. Tissue samples were placed in 
buffered formalin solution, (pH = 7, 4% concentration) 
for further histological processing.

Collected blood samples were processed by 2000 G 
centrifugation for 10 minutes; the supernatant plasma was 
assayed with a UV-160°-Shimadzu fluorescence spectro-
photometer with excitation at 433±2 nm and emission at 
455±2 nm. Tissue samples were processed as follows: The 
eyes were sectioned in a horizontal plane to the optic nerve, 
fixed with agar and embedded in paraffin. Then three, 4 
micron thick sections were made at 80 micron intervals 
followed by hematoxylin-eosin staining. 

Samples were viewed with a fluorescence microscope 
fitted with a spot camera (Nikon Eclipse E800, DN100 
Network Camera). Images were analyzed using Image J, at 
10 different retinal areas (200 µm2) in each section (2 avas-
cular spots, at 5 different retinal layers: external nuclear, 
external plexifom, internal nuclear, internal plexiform and 
ganglionar). The average retinal fluorescence intensity was 
calculated and normalized to the plasma fluorescence in-
tensity for each animal using the formula:

 
(Tf1+Tf2+...+Tf10)
 Pf × 10

Statistical analysis was made with GraphPad Prism, us-
ing one-way Anova and Tukey’s multiple comparison test.

Results
Retinal fluorescence was significantly higher in the un-
treated diabetic group. Figure 1 represents the non-diabet-
ic group, Figure 2 the non-treated diabetic and Figure 3 
the treated diabetic. 

The fluorescence, assayed with image J, was significant-
ly different between groups. The control non-diabetic and 
the treated diabetic group presented lower fluorescence in-
tensity, with no statistically significant difference between 
these two groups. The untreated diabetic group presented 
the highest fluorescence intensity, with significant differ-
ence between treated and untreated diabetic groups. Figure 
4 represents the comparative retinal fluorescence between 
groups, normalized to the plasma fluorescence.

Tf = tissue fluorescence
Pf= plasma fluorescence
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In the control group glycemic values presented non-
significant changes, whereas both diabetic groups pre-
sented decreasing values. The difference between the 
non-treated and treated group was not statistically sig-
nificant. Figure 5 compares the glycemic values between 
these groups. 

At the end of the experiment, the body weight was 
increased in the control non-diabetic group, decreased 
in the diabetic treated group and slightly decreased in 
the non-treated group, compared to starting weight, 
without statistical significant differences between groups 
(Figure 6).

Fig. 1. Retinal fluorescence in the non-diabetic group Fig. 4. Retina fluorescence comparison between groups

Fig. 5. Comparison of glycemia between groups

Fig. 3. Retinal fluorescence in the treated diabetic group Fig. 6. Comparison of bodyweight changes 

Fig. 2. Retinal fluorescence in the untreated diabetic group
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Discussions 
This review mainly focuses on the role of general stem cell 
stimulating therapies, especially, in the management of 
diabetic retinopathy. 

We have demonstrated for the first time that stem cell 
stimulation can reduce BRB breakdown in diabetic rats in 
retinal tissue. An easy reproducible technique was present-
ed, which is appropriate for demonstrating the effect of 
different pharmacologically active substances on vascular 
permeability changes.

Long-term Olimpiq® StemXCell SL treatment signifi-
cantly decreased tissue fluorescence, vascular leakage and 
the BRB breakdown, compared with the control, untreat-
ed group. 

Theoretically, two mechanisms may induce these 
changes: vascular structural regeneration through stem cell 
activation and lower glycemic values, through the regener-
ation of insulin-secreting cells. Gradually decreasing values 
of glycemia could be demonstrated in all groups, with no 
statistically significant differences between them, therefore 
the regenerative mechanism of insulin-secreting cells could 
not be demonstrated in this experiment. 

Conclusions
The results of this study suggest that Olimpiq® StemXCell 
SL would be useful for the treatment of ocular diseases as-
sociated with BRB leakage, such as diabetic macular edema 
and retinopathy. 
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