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Artificial intelligence (AI) is a discipline within the field of computer science that encompasses the development and utilization of machines 
capable of emulating human behavior, particularly regarding the astute examination and interpretation of data. AI operates through the utiliza-
tion of specialized algorithms, and it includes techniques such as deep (DL), and machine learning (ML), and natural language processing 
(NLP).  As a result, AI has found its application in the study of pharmaceutical chemistry and healthcare. The AI models employed encompass 
a spectrum of methodologies, including unsupervised clustering techniques applied to drugs or patients to discern potential drug compounds 
or appropriate patient cohorts. Additionally, supervised ML methodologies are utilized to enhance the efficacy of therapeutic drug monitor-
ing. Further, AI-aided prediction of the clinical outcomes of clinical trials can improve efficiency by prioritizing therapeutic intervention that are 
likely to succeed, hence benefiting the patient. AI may also help create personalized treatments by locating potential intervention targets and 
assessing their efficacy. Hence, this review provides insights into recent advances in the application of AI and different tools used in the field 
of pharmaceutical medicine.
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Introduction
Over the last several decades, there has been a notable 
increase in the application of artificial intelligence (AI), 
specifically machine learning (ML), within the realm of 
healthcare applications [1]. The domain of pharmacology 
encompasses the utilization of AI and ML methodologies 
to effectively scrutinize diverse data sources. These sources 
encompass a wide spectrum, spanning from the intricate 
chemical composition of a pharmaceutical substance to 
the comprehensive clinical attributes of patients [1]. Fur-
thermore, genomic data and disease characteristics also fall 
within the purview of analysis [1]. Molecular fingerprints 
and other quantitative structure–activity relationship 
(QSAR) descriptors have been developed for the quanti-
tative and categorical characterization of pharmaceutical 
compounds [2]. Computational algorithms, particularly 
those pertaining to AI and parallel processing, have wit-
nessed noteworthy progress in recent decades, thereby 
endowing computer-based inference engines with the ca-
pacity to attain increasingly profound deductions [2]. AI 
functions with sophisticated mathematical calculations 
and investigations and analyzes the data sets, overpower-
ing human capabilities [3]. ML is a type of AI that can use 
complex computer programmes to evaluate vast amounts 
of data without any human intervention [3]. ML makes 
predictions by using algorithms to learn from acquired 
data, identify patterns, and then make predictions. Hence, 
ML can provide valuable support throughout multiple 

phases of drug discovery, encompassing pharmacological 
investigations like the discernment of lead compounds 
[4]. Thus, this review provides an overview of the current 
developments and AI technologies used in drug discovery 
and design, clinical trials, precision medicine and pharma-
covigilance. It is crucial for the researchers from various 
fields who collaborate with pharmaceutical specialists to 
have the knowledge on the current AI tools used in phar-
maceutical medicine.  

Discovery of Drug and designing 
AI involvement in the development of a newer drug or 
any pharmaceutical product can be from the bench to the 
bedside due to its potential in planning rational drug de-
sign. As the pharmaceutical industry is expanding quickly, 
the absence of cutting-edge technology is impeding  the 
development of drugs and making it a costly and time-
consuming procedure [5]. The process of discovery is a 
multifaceted and labor-intensive endeavor encompassing 
the identification of prospective therapeutic targets, the 
synthesis and evaluation of novel chemical entities, and 
the subsequent introduction of a newly developed phar-
maceutical product into the marketplace [6]. AI has the ca-
pability to manage the drug development process through 
its stages due to its potential to handle a vast quantity of 
data obtained from various sources. Further, it can be ap-
plied in identification of newer drug targets and to predict 
the potential toxicity and side effects of drugs in research 
[7]. The conventional drug discovery process depends on 
an array of computational and experimental data for the 
identification of the novel drug targets, their efficacy and 
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toxicity [7]. AI algorithms can also have the potential to 
analyze genomic and proteomic data thereby helping in 
the identification of the potential drug targets for various 
disease categories such as cancer, cardiovascular disease, 
and neurodegenerative disorders, etc [5]. The medication 
for idiopathic pulmonary fibrosis was recently found by 
the in-silico Medicine company through the application of 
AI. Phase I trials of the therapy have shown promising re-
sults (https://clinicaltrials.gov/ct2/show/NCT05154240). 
The process of  drug discovery and design involves various 
processes that utilizes AI quite effectively [8]. 

Drug interactions Predictions and target binding  
affinity 
Drug-target interaction phenomena are the complex inter-
actions that happen between chemicals and drug targets 
in the body that are physiologically active. To ascertain a 
drug’s therapeutic efficacy, it is critical to predict the drug-
target interaction [9]. The anticipation of the interaction 
between a pharmaceutical agent and a receptor or protein 
is of utmost importance in comprehending its therapeutic 
potency and efficiency [5,10]. The therapeutic action of 
the drug will be hampered by a lack of interaction between 
the drug molecules and targeted proteins [5]. Though in 
vitro and in vivo experiments can determine the bioactivity, 
these experiments are time-consuming and expensive [8]. 
Also, the interaction between an unintended protein or re-
ceptor and the drug molecule may result in toxicity. The 
bioactivity of the drug or the drug-target binding affinity 
(DTBA) is crucial for the intended drug response; hence, it 
is an important phase in drug discovery [5,8]. Since the de-
velopment of high-throughput methods, sequencing tech-
nology, and computer-aided drug design, a wide range of 
proteins have been successfully sequenced and many com-
pounds have been synthesized [11]. Through a compre-
hensive review of pertinent literature and the synthesis of 
accumulated expertise, pertinent information has been sys-
tematically collated and diverse databases have been estab-
lished [11]. Thus, one of the innovative approaches docu-
mented for forecasting drug-protein interactions involves 
conducting an initial screening of established interaction 
data sourced from various databases such as DrugBank, 
UniProt database, PubChem database, KEGG database, 
etc [12]. The majority of the data contained within these 
databases is readily accessible to the public and can be ob-
tained without charge [11]. This availability of data serves 
as a solid basis for addressing challenges in the prediction 
of  drug-target interaction through the implementation 
of ML methodologies [13]. Researchers may get datasets 
from databases that include a variety of information based 
on their specific requirements [11]. However, the current 
understanding of drug-target interactions, derived from 
wet-lab experiments, is characterized by limited scope and 
depth. This disparity between the unknown and known 
drug-target pairs has sparked a significant curiosity in the 

pursuit of effective methodologies for predicting drug-tar-
get interactions (DTI) [13]. 

The newer computational methodologies involved in 
DTI predictions include the utilization of a docking sim-
ulation, a ligand-based approach, text mining methods, 
chemo-genomic approach, network-based methods, and 
ML/DL- based methods [13,14]. Drug target binding af-
finity (DTBA) prediction methodology and DTI predic-
tion techniques are the two main computational methods 
used in drug target prediction [9]. AI- based methods can 
overcome the limitations posed by experimental meth-
ods. It can determine the drug’s bioactivity either by 
recognising the features or similarities between the drug 
and the target. Feature-based interactions identify the tar-
get’s and drug’s chemical moieties to calculate the feature 
vectors. In contrast, the similarity between the drug and 
the target is considered in similarity-based interaction, 
where it is presumed that similar drugs would interact 
with the same targets [15]. DL and ML approaches have 
been used; DL performs better than ML as it applies 
network-based methods rather than 3D protein structure 
as in ML.  A variety of ML and DL techniques, includ-
ing KronRLS, SimBoost, DeepDTA, and PADME, have 
been used to ascertain DTBA. ML-based approaches 
such as Kronecker-regularized least squares (KronRLS), 
assess how similar drugs and protein molecules are to de-
termine DTBA. Similarly, SimBoost takes into account 
both feature-based and similarity-based interactions and 
predicts DTBA using regression trees [15]. DL methods 
such as DeepDTA was the first DL model developed to 
predict binding affinity between drugs and their targets. 
It works with the principle of modelling  compound 1D 
representations and protein sequences with convolutional 
neural networks (CNNs), which achieved better con-
cordance index (CI) performance as compared to Kro-
nRLS77 and SimBoost [16]. Further, a newer DL-based 
prediction model wideDTA was utilized using chemical 
and biological word sequence information. It uses four 
different word- or text-based sources, namely the protein 
domains and motifs, ligand SMILES, protein sequence, 
and maximum common substructure words. It outper-
formed DeepDTA on the KIBA dataset with statistical 
significance [17]. This demonstrates that WideDTA, a 
word-based sequence representation method, is a viable 
substitute for DeepDTA, a character-based sequence rep-
resentation technique used in DL models to predict the 
target binding affinity [17].

Prediction of Protein structure 
The overexpression of various proteins has a significant as-
sociation with the pathogenesis of diseases. Consequently, 
in order to design the drug molecule with the intention of 
selectively targeting the disease, it is essential to precisely 
predict the structural makeup of the target protein. [5,10]. 
By applying its predictive powers to ascertain the three-di-
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mensional protein structure, AI has the capacity to make a 
significant contribution to structure-based drug discovery. 
This is especially useful because it allows us to design com-
pounds that align with the target protein site’s chemical 
environment. Thus, AI helps predict how a compound will 
affect the target protein and take safety precautions before 
the compound is synthesized or produced [10].

A group called CASP (Critical Assessment of Structure 
Prediction) tries to find ways to figure out how to use infor-
mation from amino acid sequences to figure out the three-
dimensional structure of proteins [18]. The main goal 
of the critical evaluation of protein structure prediction 
(CASP) is to push forward a technological approach that 
can figure out and put together a protein’s three-dimen-
sional structure using only its sequences. CASP has always 
been primarily concerned with computing the structures 
of individual proteins and domains [18]. The achievement 
can be primarily accomplished through two approaches 
based on the absence or presence of a pre-existing tem-
plate structure. Template-free models and template-based 
models are the two approaches identified. Among these, 
template-based modelling is more reliable and can be eas-
ily employed. The existing protein structure is used as a 
foundation and, hence, is more advanced and can be used 
even by researchers with limited experience [19–21]. Alter-
natively, template-free modelling techniques can be used 
to construct the structure in the absence of a pre-existing 
template for the structure of the protein. Template-free 
modelling commonly involves the de-novo folding meth-
od. The de novo folding approach, in particular, endeavors 
to construct three-dimensional structures from the ground 
up, leveraging the principles of physics. Using a precise en-
ergy function is key to making it work because it lets you 
look specifically for conformations with the lowest energy 
state. This energy function also helps tell the difference be-
tween native-like structures and decoys, which adds to the 
overall success of the de novo folding method[19–21].

AlphaFold is a novel computational methodology de-
veloped for the prediction of protein structures by ana-
lyzing the covariation between physically adjacent ho-
mologous sequences [22]. AlphaFold was developed by 
DeepMind, a startup of Google, in 2018 and was the best 
performer in the 13th Edition of Critical Assessment of 
Protein Structure Prediction (CASP) [23].  The first ver-
sion of AlphaFold can predict the protein structure by 
training a neural network with just the protein sequence 
using DL. It has a convolutional neural network that uses 
the Protein Data Bank (PDB) structures as training data 
to predict distance between pairs of residues and multiple 
sequence alignment (MSA) to predict the probability of 
distribution of backbone torsion angles, thus creating the 
distograms [22]. A simple gradient descent algorithm can 
be used to optimize the resulting potential and produce a 
protein’s three-dimensional structure [22]. But the limi-
tation lies with atomic accuracy when no homogenous 

protein structure is available. This was overcome with Al-
phaFold2, which can foresee the structure of protein with 
atomic accuracy. It adopts multilevel alignments using the 
DL algorithm, incorporating both physical and biologi-
cal information about the protein of interest [24]. It out-
performed experimental structures in the 14th edition of 
CASP [24]. 

New techniques have recently been released to address 
some of AlphaFold2’s drawbacks, including its incapac-
ity to forecast novel structures and its need for lengthy 
processing time. Natural language processing (NLP) is a 
new technique based on protein language models [23]. 
ESMfold uses a protein language-based model using DL 
trained with 12 billion biological parameters. Compared 
to AlphaFold2, it presented lower TM-scores but better 
accuracy and lower prediction time as compared to Alpha-
Fold2 for structures with high confidence [25].

Prediction of drug toxicity 
Toxicity refers to the degree to which a certain chemical or 
combination of chemicals might damage internal organs 
or systems. Prediction of drug toxicity is a crucial stage 
during drug development that helps researchers to recog-
nize safety issues and develop and design  drug that have 
fewer toxic effects [26]. The drug  must meet the safety and 
effectiveness requirements established by regulatory bodies 
like the European Medicines Agency (EMA) and the Food 
and Drug Administration (FDA) in the United States [17]. 
Support vector machines (SVM), k-nearest neighbor (k-
NN), decision trees (DT), and random forests (RF) are ML 
techniques that are frequently employed in toxicity pre-
diction [26]. Alternatively, deep neural networks (DNN), 
recurrent neural networks (RNN), convolutional neural 
networks (CNN), graph convolutional neural networks 
(GCNN), graph neural networks (GNN), and graph at-
tention networks (GAT) are among the most sophisticated 
techniques used in DL. DeepTox is an AI tool based on 
three-layered DNN used to predict the toxicity of drugs, 
and is reported to outperform naive Bayes, support vector 
machines, and random forests [27]. Its pipeline involves 
cleaning data and quality control, 2D and 3D chemical 
descriptors with DNN-based model, evaluation of the 
model, and ensemble prediction [27]. 

Clinical trials (CT) of drugs 
The utilization of AI is increasingly acknowledged as a 
viable approach for achieving sustainable and optimized 
drug development. Consequently, there is ongoing dis-
course and practical exploration regarding the various ap-
plications of AI in clinical trials [28]. There are software 
programs that can be utilized to predict the toxicity of 
drugs by leveraging target information. Effective toxicity 
predictions possess the potential to supplant conventional 
pre-clinical approaches, such as in vitro and animal models 
[29].
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Forecasting patient outcomes in CT
Predicting clinical outcomes is the most important part 
of the rise of precision medicine. It also helps shape trial 
design by reducing the statistical changes seen in larger 
groups. Artificial intelligence (AI) could be used to simu-
late data in order to find better statistical outcome measures 
[30]. A new research suggests that shorter trial durations 
might arise from using an AI system to forecast participant 
outcomes and identify those who are more likely to ad-
vance quickly and reach end-points early [31]. AI can ana-
lyze the electronic medical records and predict the patient 
drop outs, hence additional education can be rendered to 
the patient for longer participation [32]. ML algorithms 
can also predict the clinical outcome in terms of mortality 
by analyzing the large databases and correlating the drug-
related predictive biomarkers and survival data from inter-
ventional trials done in various tumors [33]. 

Predicting the clinical trial success 
During the early phases of clinical trial AI can be used to 
predict the bioactivity, protein target interaction, and tox-
icity of drug, etc. Multi-instance learning (MI) algorithms 
can predict the prognosis of the disease and hence can ana-
lyze the full trail success [28]. The capacity to anticipate 
clinical trial results ahead of time may enhance the effi-
cacy of pharmaceutical research and development (R&D), 
provide effective funding channels, and create novel finan-
cial instruments to support biotechnology research [34]. 
AI tools like PrOCTOR[35] can predict the likelihood of 
CT failure due to drug toxicity. The ensemble is trained 
mainly on a dataset with simple drug descriptors, drug 
target interaction and expression levels of launched drugs 
to predict the side effects due to toxicity[35]. Similarly, 
inClinico CTOP models predicted the outcome of Phase 
II trials by analyzing the target choice and efficacy of the 
drug [35]. The fact that inClinico was able to forecast the 
effectiveness of LNP023, a first-in-class factor B inhibitor, 
in treating the uncommon disease paroxysmal nocturnal 
hemoglobinuria suggests that the model may be helpful 
even in the absence of any prior knowledge regarding the 
clinical significance of the drug’s mode of action [35]. Im-
plementation of AI technology in randomized controlled 
trial (RCT) can also be in terms of creating an “AI arm” 
along with the study and control arm so that the potential 
of the CT can be validated irrespective of its primary out-
come [36]. 

Recruitment of patients for CT
Among the many hurdles in conducting the CT, patient 
recruitment remains the critical challenge. The challenges 
in recruiting are brought on by complicated protocols, lack 
of awareness, psychological anxiety about taking part, or 
lack of desire to participate. The complex inclusion and 
exclusion criteria further makes the recruitment of right 
patient difficult [37]. By making information available to 
a wider range of possible trial participants via open CT 

platforms, AI might improve patient selection [37]. The 
database called clinicaltrials.gov has compiled the eligibil-
ity criteria for over 350,000 trials [28]. 

Several AI tools have been developed to manage the var-
ious phases of CT.  AiCure is an innovative AI-driven plat-
form that monitors the patient’s adherence to instructions 
and prescriptions[38]. The efficacy of meticulously crafted 
protocols is contingent upon the adherence of participants 
to the prescribed instructions. An inadvertent oversight, 
such as an omission in pill consumption, may exert an ad-
verse influence on the outcomes of the study. This tool fa-
cilitates the utilization of smartphones by clinical trial par-
ticipants to capture video recordings of their medication 
administration. Utilizing computer vision algorithms, the 
AiCure software has the capability to anticipate the inges-
tion of substances by an individual. This tool additionally 
possesses the capability to assess the facial expression of an 
individual, thereby monitoring their reaction to therapeu-
tic interventions and thereby facilitating the advancement 
of therapeutic modalities [38].

Trials.ai [38] is another innovative startup that leverages 
AI to facilitate the development of clinical trial protocols. 
Utilizing natural language processing and various AI meth-
odologies, this system effectively employs advanced tech-
niques for data analysis and interpretation. The software 
facilitates the collection and analysis of data from various 
sources, including journals, drug labels, and private hospi-
tal data, through established connections. The aforemen-
tioned data are utilized for the purpose of examining pro-
posed trials, the stringency of eligibility criteria, and their 
impact on various aspects of clinical trial outcomes, such as 
cost, participant retention, and so forth [38].

Pharmacovigilance
Pharmacovigilance (PV) is a practice that primarily at-
tempts to limit the introduction of medications with un-
favorable side effects in the general population. It deals 
with the systematic gathering, analysis, and reporting of 
data on the safety of medications, including prescription 
drugs, over-the-counter treatments, and herbal supple-
ments. Following the thalidomide disaster, adverse drug 
reactions (ADRs) were systematically analyzed, coordi-
nated, and regulated [39]. The major drawbacks of tradi-
tional pharmacovigilance are the large data volume, com-
plexity, regulatory demands, and manual data processing. 
The AI tools can evaluate real-world data and effectively 
increase drug safety monitoring [39]. AI predicts and de-
tects adverse drug events (ADEs) using ML and natural 
language processing (NLP). The increasing number of 
medication-related problems makes identification using 
varied data sources such as electronic health records and 
pharmacovigilance databases crucial [40].  The most sig-
nificant obstacle that humans face when evaluating and 
analyzing massive amounts of data is time constraints 
[41]. The DL algorithms model and databases are pub-
licly available that can detect and identify the unreported 
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adverse effects of drugs. One of the suggested models 
that achieved state-of-the-art performance in ADE de-
tection and extraction was the DL-based technique with 
Bidirectional Encoder Representations from Transform-
ers (BERT) models that reviewed 10,000 datasets from 
WebMD and Drugs.com. It demonstrated the potential 
of DL in healthcare tasks and information extraction, ad-
dressing the issues that doctors experience while prescrib-
ing of medications [42].

The WHO-collaborated centre for worldwide drug 
monitoring, the Uppsala Monitoring Centre (UMC), was 
founded in Uppsala, Sweden, in 1978. On behalf of the 
WHO, it runs various databases such as VigiFlow, Vigi-
Base, and VigiLyze. VigiAccess is an open access database 
that is available and open to the public. PV also offers 
other techniques, such as VigiGrade, VigiMatch, and Vi-
giRank,  for the examination of case reports [43]. In India, 
MAHs (marketing authorization holder) is required to re-
port the ICSR (Individual Case Safety Report) of any mar-
keted drug to both the National Coordination Centre for 
Pharmacovigilance Programme of India (NCC-PvPI) and 
the Central Drugs Standards Control Organisation (CD-
SCO) (Pharmacovigilance Gsr 287 € dated 8-03-2016, 
REGD.D.L.-33004/99). Another, VigiFlow software, is 
used to transmit these reports to WHO-UMC, Sweden 
[44].

The pharmacovigilance Programme of India utilized AI 
firstly for inserting both structured and unstructured con-
tent regarding the case in the form of XML, DOCX, im-
ages and PDFs. The extraction of information from ICSR 
is carried out using NLP and ML in a way that complies 
with regulations. Secondly, AI is used for decision-mak-
ing, as ICSR is often of low quality.  AI may be crucial 
for performing correlations, medication classifiers, unlisted 
or individual random adverse events, etc [39]. MOdified 
NARanjo Causality Scale for ICSRs (MONARCSi), a cau-
sality decision support tool, was developed based on the 
Naranjo causality score. It exhibited high specificity (93%) 
and moderate sensitivity (65%) with high positive and 
negative predictive values (79 and 88%, respectively) and 
an F1 score of 71%, suggesting it to be potentially useful 
tool in assisting the PV safety professionals in assessing the 
drug-event causality in a more consistent manner [45]. 

Precision medicine 
Personalised medicine, an evolving discipline within the 
realm of healthcare, endeavours to customise therapeutic 
regimens to the individualised requirements of patients, 
taking into consideration their genomic and medical infor-
mation [46]. The goal of precision medicine is to identify 
the underlying cause of disease in an individual patient. 
Finding the underlying cause of a patient’s illness can then 
be used to shed light on the biology and pathogenesis of 
the condition, ultimately assisting in the development of 
treatments that target the illness’s root cause [47].

Precision medicine stresses how important it is to use 
both molecular profiling and well-known clinical indexes 
together to make personalised diagnostic, therapeutic, and 
prognostic methods for each patient group. The move to-
wards a deeper understanding of disease based on molecu-
lar biology will inevitably lead to a new, more accurate tax-
onomy that incorporates new molecular knowledge [48]. 

Personalised medicine possesses the inherent capacity 
to revolutionise the therapeutic landscape, as it empow-
ers healthcare providers to formulate customised treatment 
regimens that are meticulously tailored to the unique char-
acteristics of each patient [46]. The remarkable progress 
in precision medicine is evident through the realisation of 
concrete advantages, including the timely identification of 
ailments and the increasing prevalence of tailored thera-
peutic interventions within the realm of healthcare [49]. 
Numerous data collection and analytics technologies con-
tribute to the effectiveness of precision medicine in cus-
tomizing care. Scientists have an unmatched opportunity 
to derive new phenotypes from real clinical and biomark-
er data because of the uncommon convergence of high-
throughput genotyping and widely used electronic health 
records (EHRs) [50]. The influence of precision medicine 
on healthcare today, particularly in terms of genotype-
guided treatment, is a subject that has been extensively re-
searched and analysed [46].

Personalised medicine can be integrated with the trans-
lational workflow through various phases of drug trials. 
AI-based methods can be used to screen drug data and de-
termine which of the many medications and compounds 
currently on the market are active against a particular ther-
apeutic target and consistent with the molecular pathol-
ogy that has been identified in a given patient [51].   It 
has also been shown that AI-based research may provide 
more accurate information on the potential effects of drugs 
and other chemicals on different structural and functional 
aspects of a cell [52]. Some of the chemistry-focused web-
sites with extensive databases, such as DeepChem (https://
deepchem.io/about.html), may be especially used to detect 
the properties of drugs and chemicals. If an existing medi-
cation or molecule is unable to effectively regulate a target, 
developing a new drug would be an option. AI has been 
utilised to develop new structures that might be useful for 
developing more effective treatments, such as medications 
or mechanical devices, and to help choose appropriate 
chemical syntheses [53]. In contrast to the conventional or 
“officinal” manufacture of medicines, “magistral” produc-
tion is the recent advance in the production of therapies in 
real-time, depending on the specific needs of the patient 
[54]. One may envision using robotics technology driven 
by AI to facilitate the accurate and efficient manufacturing 
of precision medicines [55]. Given that the first 3D-print-
ed medicine was approved by the US FDA in 2015, 3D 
printing of medicines may also make it easier to produce 
remedies in almost real-time [56].
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Drawbacks of AI 
There are various barriers to properly deploying any type of 
information technology in healthcare. The barriers include 
those related to data collection, technological advance-
ment, therapeutic use, and ethical and societal issues. The 
first issue is that large datasets are needed in order for ML 
and DL models to accurately predict or identify a variety of 
jobs. The industries with easy access to large datasets have 
seen the biggest advancements in ML’s capacity to generate 
more precise and accurate algorithms, according to Lubar-
sky et al. [57]. Information accessibility is a major issue 
for the healthcare sector. According to Baowaly et al., AI-
based systems lead to issues with data security and privacy. 
Health records are a common target for hackers during 
data breaches because they contain sensitive and important 
data. Therefore, protecting patient privacy in medical re-
cords is crucial [58]. S. Ji et al., state the possibility of users 
mistaking the artificial systems for real people and granting 
permission for more covert data collection, posing serious 
privacy issues [57].

The “black box” issue is a prevalent critique aimed at 
AI systems. Frequently, DL algorithms are unable to of-
fer compelling justifications for the predictions they make. 
There is no legal means for the system to provide an expla-
nation if the recommendations are incorrect. It also com-
plicates the process by which scientists interpret the rela-
tionship between the data and their predictions. Moreover, 
people may completely lose faith in the medical system as 
a result of the “black box”[59].

Since the time of its inception, ethical questions regard-
ing AI have been raised. Accountability, not the data se-
curity and privacy issues raised earlier, is the real problem. 
The current system demands that when poor decisions 
are made, especially in the medical field, someone be held 
accountable because of the severity of the consequences. 
Since the doctor was not involved in the creation or over-
sight of the algorithm, it may be difficult to hold them ac-
countable. On the other hand, it can seem unconnected to 
the therapeutic context that the developer is at fault [60]. 
People have always worried that employment in health-
care could be eliminated by AI. Because they fear being 
replaced, some people are hostile towards and sceptical of 
AI-based projects [60].

Most of the research on AI’s application has been con-
ducted in a business context, so data on how it affects pa-
tient outcomes is lacking. Up until now, the majority of 
healthcare AI research has been carried out in non-clinical 
environments. It could be challenging to generalize study 
findings as a result. The gold standard in medicine, ran-
domized controlled trials, cannot prove the advantages of 
AI in healthcare [61].

Conclusion  
The advent of AI has resulted in a multitude of advanta-
geous outcomes within the realm of pharmaceutical medi-
cine. It has demonstrated significant promise across mul-
tiple domains, encompassing drug exploration, clinical 
experimentation, and patient management. Utilising AI-

Fig 1. Application and tools of Artificial Intelligence (AI) used in Pharmaceutical Medicine. 
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powered tools facilitates the identification of novel drug 
targets and expedites the drug development trajectory, 
simultaneously mitigating financial and time constraints. 
These innovative applications have resulted in enhanced 
efficacy and diminished expenses in the realm of pharma-
ceutical development. Furthermore, the integration of AI 
holds the potential to contribute to patient stratification 
and the customization of pharmaceutical interventions. A 
patient-centric approach and the integration of AI with 
the RCTs can help in predicting and validating the clinical 
outcome, thereby conducting successful and cost-effective 
trials. This can result in enhanced therapeutic efficacy and 
improved overall health outcomes. 
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