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Objective: The objective of this study is to demonstrate the safety and reproducibility of our surgical technique for implanting decellularized 
vascular xenografts in the carotid artery of sheep.
Methods: Acellular porcine carotid arteries were implanted as interposition xenografts in seven sheep. An intravascular shunt was used for 
cerebral protection, and a flowmeter was utilized to assess graft performance.
Results: There were no intraoperative deaths or postoperative neurological complications observed. Acute graft thrombosis occurred in one 
sheep during surgery, but was successfully managed with thrombectomy to restore blood flow. Post-implantation flowmetry and Doppler 
ultrasound confirmed graft functionality.
Conclusions: Our study demonstrates the successful application of our surgical method for implanting decellularized vascular xenografts 
in the carotid artery of sheep. The implanted grafts maintained patency, normal blood flow, and favorable wound healing and neurological 
outcomes post-surgery.
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Introduction 
Vascular diseases are a leading cause of mortality and mor-
bidity worldwide, resulting in numerous deaths [1]. Treat-
ment modalities may encompass lifestyle modifications, 
pharmacotherapy, and surgical excision of affected vessels 
with subsequent placement of a vascular graft [2].

The primary objective of tissue-engineered vessels 
(TEVs) is to serve as an alternative to autologous grafts in 
cases where a patient’s own vessels are not viable [3]. Given 
that many individuals with vascular conditions lack suit-
able arteries and veins for autologous grafts, the advance-
ment of TEVs has been a focal point of research for an 
extended period. The challenges posed by small-diameter 
vascular grafts present a significant obstacle for vascular by-
pass alternatives, constituting a substantial public health 
concern [4]. Current clinical approaches for bypassing 
small-diameter (<6 mm) blood vessels in the management 
of cardiovascular disease are frequently hindered by the 
absence of suitable autologous arteries and veins due to 
conditions such as atherosclerosis, trauma, or varicose vein 
disease [5].

Advancements in tissue engineering provide innovative 
strategies for overcoming the limitations associated with 
small-diameter prosthetic vascular grafts. These conven-
tional grafts are frequently hindered by complications such 
as inflammatory responses, thrombogenicity, bleeding 

secondary to anticoagulant therapy, mismatched compli-
ance, and the potential for long-term aneurysm formation 
[6,7]. The development of a blood vessel constructed from 
autologous cells and a biocompatible scaffold, capable of 
remodeling, repairing, and growing, signifies a significant 
therapeutic advancement. Novel techniques are emerging 
that facilitate the cultivation of various tissues both in lab-
oratory settings and within living organisms, often utiliz-
ing naturally-derived scaffolds [8].

In our prior published research, we obtained a function-
al acellular vascular xenograft through a NaOH-based de-
cellularization solution, from porcine carotid arteries [9].  

In vivo animal model testing of these grafts is essential 
on the way to a clinical scenario. All criteria for testing a 
graft in systemic circulation were met by positioning them 
in the carotid artery and the xenogeneic character was 
achieved by implantation on an ovine model.

Our hypothesis was that these grafts would be repopu-
lated with the host organism’s cells within a three-month 
period. Following this timeframe, the grafts will be ex-
planted, and comprehensive macroscopic and histological 
evaluations will be performed.

 The aim of this study is to demonstrate that our 
surgical method of implanting decellularized vascular xen-
ografts in the carotid artery of sheep is a safe and reproduc-
ible procedure.
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Methods 
XenoGraft Fabrication
The acellular scaffolds were developed at the Regenerative 
Medicine Laboratory within the Center of Advanced Med-
ical and Pharmaceutical Research, and the experimental 
procedures were conducted at the Experimental Station, 
both facilities of „George Emil Palade” University of Medi-
cine, Pharmacy, Sciences and Technology of Targu Mureș, 
Romania. Our team [9] previously published the decellu-
larization protocol and the quality control protocols.

Anesthesia management
The study adhered to specialized guidelines including Di-
rective 2010/63/EU of the European Parliament and of the 
Council of September 22, 2010, on the protection of ani-
mals used for scientific purposes, ARRIVE guidelines, and 
the AVMA euthanasia guidelines 2020. Ethical approval 
was granted by the University's Ethics Committee under 
approval number 1434, dated July 8, 2021.

For the in vivo experiments, we chose 7 “Tigaie” sheep 
breed females, aged 1-3 years, weighing 45-65 kg, based on 
our previously experiment on sheep [10, 11].

A few days before the surgical intervention, the sheep 
underwent sanitation procedures and were moved indoors 
to acclimatize to the environment and get acquainted with 
the staff. Given their sociable nature, they were consist-
ently relocated in groups to enhance their comfort. Solid 
and fluid food intake were restricted 24 hours and 8-12 
hours before the surgery, respectively.

To facilitate the handling and transfer of the animal to 
the operating room, and to alienate the anxiety, the sheep 
was sedated 30 minutes before the surgery with 0.015 mg/
kg Medetomidine Hydrochloride (Produlab Pharma B.V, 
Netherlands), administered intramuscularly, along with 
0.01 mg/kg of Atropine (Accord Healthcare, Poland) sub-
cutaneously. The animal was securely positioned on the op-
erating table using harnesses and straps. To maintain home-
ostasis (circulation, oxygenation, ventilation, temperature), 
vital parameters were monitored as follows: heart rate and 
rhythm through electrocardiography (ECG) with 3 leads, 
oxygen saturation (SpO2) using a lingual pulse oximeter, 
and invasive monitoring of arterial pressure by placing an 
arterial catheter at the level of the left auricular artery.

Anesthetic induction was achieved by intravenous ad-
ministration through a previously placed peripheral venous 
catheter in the left ventral limb. A dose of 4.0 mg/kg IV 
of Propofol (Fresenius Kabi GMBH, Austria), 0.02 mg/kg 
IV of Atropine, and 0.2 mg/kg IV of Atracurium (Glaxo 
Smithkline Pharmaceuticals, Poland) was administered.

We employed the standard intubation procedure using 
a laryngoscope with a straight blade measuring 15 cm and 
a blade-handle opening of 125 degrees. The endotracheal 
tube was connected to the ventilation circuit. The experi-
mental animal was ventilated in pressure control ventila-
tion mode, with a tidal volume (Vt) of 5-10 mL/kg body 
weight (maximum 15 mL/kg) and a respiratory rate of 12-

20 breaths per minute. This was done to maintain a pCO2 
within the 30-40 mmHg range, a ventilation pressure of 
up to 30 mmHg, and a positive end-expiratory pressure 
(PEEP) of 5-10 cm H2O. Anesthesia maintenance was 
achieved with 1-2.5% Sevoflurane (Rompharm, Romania) 
in 50% oxygen (MAC 2,3%). 

Prophylactic antibiotherapy (Amoxicilin-clavulanic acid 
– 3 mg/kg IV), analgesics and anti-inflammatory treat-
ment (Ketoprofen 1 mg/kg IV, Dexamethasone 0,2 mg/kg 
IM) was administered up to three days.

Xenograft implantation into the carotid artery of the 
sheep
After sterile preparation of the surgical field, a 20 cm left 
lateral-cervical incision was made. Subcutaneous tissue 
was dissected and sectioned. The common carotid artery 
was then dissected in the jugular groove, located postero-
medially to the jugular vein, over a 10-15 cm length, with 
ligature of small arterial branches. Blood flow at this level 
was measured using a Medistim Flowmeter (MiraQ car-
diac, Norway).

Following systemic heparinization (Heparin Galenika 
a.d, Belgrade, 1.5 mg/kg), the carotid artery was clamped, 
excluding a 10-12 cm segment of the carotid artery. For 
cerebral protection, an intravascular shunt was inserted in 
the native carotid artery and fixed proximally and distally 
on tourniquets, previously passed through the arterial xen-
ograft. The carotid artery was unclamped to restore blood 
flow through the shunt. End-to-end anastomoses of the ar-
terial xenograft to the native carotid artery were performed 
at the proximal and distal ends using continuous sutures of 
non-absorbable 6.0 polypropylene. The vascular shunt was 
gradually suppressed after reclamping the carotid artery to 
evacuate air and prevent gas embolism.

Finally, the arterial xenograft was unclamped, and we 
assessed the blood flow proximally and distally using the 
Medistim Flowmeter (Figure 1). 

Two parameters, mean graft flow (MGF) and pulsatility 
index (PI), commonly measured in aorto-coronary bypass 
procedures, were taken in consideration.

Fig. 1. Intraoperative flow measurement of the vascular graft
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The surgical wound was closed in 3 layers: platysma, 
subcutaneous tissue and skin.

In the day after the surgery, Doppler ultrasound was 
performed to check the neo-artery permeability. 

Statistical analysis
Mann Whitney U Test was performed for statistical analy-
sis, using SPSS for Mac OS, version 29.0.1.1 (SPSS, Inc., 
Chicago, IL, USA).

Results
The surgical procedures were performed without any 
deaths occurring during the operation. In the sheep no. 
5, the flowmeter initially indicated no blood flow at the 
xenograft site, suggesting acute thrombosis, which was 
later confirmed upon the removal of thrombotic material.

Flow was subsequently restored, and post-implantation 
results showed optimal blood flow.

Comparative flowmeter measurements: MGF (Figure 2) 
and PI (Figure 3), did not show significant differences be-
tween the native carotid flow, with the first measurement 
at the time of implantation (T0).

The neurological examination showed positive results, 
indicating favorable outcomes in all sheep, as they main-
tained consciousness, engaged in rumination, and exhib-
ited vocalization.

One day after the surgery, on ultrasound assessment, all 
animals showed complete patency, with laminar flow and 
no signs of stenosis at the anastomosis sites. The surgical 
wounds progressed favorably, without infections or other 
complications in healing. 

Discussions
Diseases such as atherosclerosis, which affect small-caliber 
muscular arteries (< 6 mm), can result in vessel occlusion, 
leading to decreased blood flow and contributing to condi-
tions like myocardial infarction, peripheral arterial disease, 
or stroke due to occlusion of carotid or cerebral arteries [12].

Arterial replacement has become a common approach 
for treating many patients with vascular disease [13].

Autologous vessels like saphenous veins are considered 
the standard for bypass surgery. However, approximately 
one-third of patients lack suitable veins for grafting due 
to peripheral vascular disease, previous vein harvesting, or 
vein stripping from prior procedures, vascular trauma or 
limb amputation [14, 15].

The advancement of tissue-engineered vascular grafts 
for small-caliber arteries has the potential to significantly 
enhance the management of vascular diseases, thereby im-
proving patients’ quality of life [16].

The aim of this report was to establish a dependable and 
replicable method for implanting tissue-engineered vessels 
into the carotid artery of sheep. Our model facilitated graft 
implantation under the cerebral protection of an intravas-
cular shunt, without any observed neurological deficits.

Interposition of vascular grafts without intravascu-
lar shunt was also described [17], with good results, the 
contralateral carotid flow would increase 50%-100% to 
maintain blood flow to the brain. The decrease in arterial 
pressure values recorded by the invasive arterial catheter in 
the ipsilateral auricular artery at the time of carotid clamp-
ing, made us believe that the placement of the intravascular 
shunt represents a necessary measure of brain protection. 

The placement of a decellularized graft in the carotid po-
sition often results in several notable complications. One 
of the primary concerns is thrombosis, which can occur 
within the first 24 hours after implantation and sometimes 
during surgery [18-20]. 

The surgical technique described here has been suc-
cessfully implemented with graft patency and favorable 
outcomes. However, in this report one sheep experienced 
acute thrombosis during surgery. 

The exact cause of this remains uncertain, although it 
may have been related to due to the lack of epithelium, 
which provides a thrombogenic characteristic [21, 22]. 
Other potential complication may include stenosis of 

Fig. 2. Comparison of the mean graft flow measurements  – native 
carotid artery versus xenograft

Fig. 3. Comparison of the pulsatility index measurements  – native 
carotid artery versus xenograft
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grafts, infection, rupture and bleeding and aneurysm for-
mation. These conditions can be assessed using methods 
such as physical examination and ultrasound imaging [23, 
24], in the follow up period.

Conclusion
Our research demonstrated the successful utilization of our 
surgical technique. With this method, the implanted grafts 
maintained patency and normal blood flow post-surgery, 
along with favorable wound healing and neurological out-
comes. However, thrombosis was observed in one sheep. 
After 3 months of in vivo functionality, the xenografts 
macroscopic and histologic analysis will demonstrate if our 
acellular vascular grafts remained patent, biocompatible 
and repopulated with the host cells.
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