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Sodium-glucose transporter 2 inhibitors have been identified as pleiotropic pharmacological agents with demonstrated efficacy in a wide 
range of pathologies. Given the strong association between arrhythmias and significant comorbidities, exploring the potential antiarrhythmic 
effects of sodium-glucose transporter 2 inhibitors represents a critical therapeutic opportunity, particularly considering the limited efficacy 
and adverse profile of current antiarrhythmic drugs. The antiarrhythmic mechanisms of sodium-glucose transporter 2 inhibitors operate 
through direct cardiac ion channel modulation. Along with the ion channel effects, sodium-glucose transporter 2 inhibitors improve gap junc-
tion coupling by modulating connexin-43, lower sympathetic tone, maximize mitochondrial function, and induce metabolic reprogramming 
through adenosine monophosphate-activated protein kinase/sirtuin 1 activation and autophagy enhancement. Translating these encour-
aging mechanisms into focused antiarrhythmic strategies still requires establishing clear cause-and-effect links between sodium-glucose 
transporter 2 inhibitor therapy and arrhythmia prevention. Nevertheless, the current evidence regarding these effects remains inconsistent, 
underscoring the necessity for further research to elucidate the underlying mechanisms and resolve existing controversies.

Keywords: anti-arrhythmia agents, ion channels, sodium-glucose transporter 2 inhibitors

Received 27 July 2025 / Accepted 27 August 2025

Introduction
Contemporary antiarrhythmic drugs (AADs) are charac-
terized by narrow therapeutic windows, significant proar-
rhythmic potential, and complex multi-organ toxicity pro-
files that frequently limit their clinical utility [1]. Moreover, 
efficacy limitations represent a fundamental challenge in 
current arrhythmias management [2]. The limited efficacy 
of existing agents, combined with their adverse effect pro-
files and the growing prevalence of arrhythmias in an aging 
population with increasing comorbidity burden, under-
scores the urgent need for novel therapeutic approaches [3]. 

Sodium-glucose transporter 2 (SGLT2) inhibitors have 
emerged as a versatile therapeutic option with a broad 
spectrum of proven clinical benefits [4]. This trajectory 
of serendipitous discovery appears to be extending into 
the realm of cardiac electrophysiology [5]. SGLT2 inhibi-
tors seem to exert antiarrhythmic effects through several 
off-target mechanisms [6]. Recent evidence reveals that 
SGLT2 inhibitors demonstrate consistent antiarrhythmic 
effects with an up to 25% reduction in atrial fibrillation 
(AF) serious events and a 14% decrease in AF occurrence 
[7,8], representing a paradigm shift in cardiovascular phar-
macology. However, data regarding ventricular arrhyth-
mias remain conflicting, highlighting the need for further 
comprehensive studies [9,10]. 

Therefore, this review will critically evaluate the clini-
cal and mechanistic evidence supporting the potential of 
SGLT2 inhibitors as antiarrhythmic agents, highlighting 
their strengths and limitations.

The antiarrhythmic effects of SGLT2 inhibitors 
in clinical trials
The potential antiarrhythmic properties of SGLT2 inhibi-
tors first emerged as secondary observations within large-
scale cardiovascular outcome trials primarily designed 
to evaluate HF and cardiovascular mortality endpoints. 
These landmark studies, including EMPEROR-Reduced, 
EMPEROR-Preserved, DAPA-HF, and CANVAS, have 
provided unprecedented opportunities to assess arrhyth-
mic outcomes in well-characterized patient populations 
through robust methodology and extended follow-up pe-
riods [11–14]. 

The EMPA-REG study [15] demonstrated a signifi-
cant reduction in all-cause and cardiovascular mortality 
in patients receiving empagliflozin compared to placebo, 
along with a tendency towards a reduced risk of sudden 
cardiac death (SCD). In EMPEROR-Preserved trial [13] 
along with its subsequent pre-defined secondary analysis 
[16], empagliflozin demonstrated a reduction in the risk of 
hospitalization for HF or cardiovascular death, with simi-
lar outcomes observed in both patients with and without 
AF (HR 0.78 [95% CI 0.66-0.93] vs. 0.78 [95% CI 0.64-
0.95]). The study demonstrated a potential trend toward 
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reduction in SCD incidence, with 7.3% of events occur-
ring in the empagliflozin group compared to 8.2% in the 
placebo group. 

The most compelling evidence comes from the EMPA-
ICD trial, the first prospective study that investigated the 
antiarrhythmic properties of empagliflozin [17]. In 150 pa-
tients with diabetes and implantable cardioverter-defibril-
lators (ICD), empagliflozin reduced ventricular arrhyth-
mias by 1.69 events compared to no change with placebo 
(coefficient -1.07, 95% CI -1.29 to -0.86, p<0.001). This 
objective, device-based evidence definitively establishes di-
rect antiarrhythmic properties independent of secondary 
cardiovascular benefits. 

A post-hoc analysis of the DECLARE-TIMI 58 trial 
revealed potential antiarrhythmic benefits by showing a 
significant (19%) reduction in the risk of developing AF in 
individuals with T2D who were taking dapagliflozin (HR 
0.81, 95% CI 0.68-0.95) [18]. Furthermore, this obser-
vation presents consistent benefits regardless of previous 
AF history or baseline cardiovascular status [18]. Another 
post-hoc analysis emerged from the DAPA-HF trial [10] 
demonstrated that dapagliflozin treatment was associated 
with a reduction in the incidence of the composite end-
point that included serious ventricular arrhythmias, car-
diac arrest, and SCD in patients with HFrEF. Although 
the literature documented suppression of both supraven-
tricular and ventricular arrhythmias, the underutilization 
of Holter ECG monitoring limited the accurate quantifi-
cation of arrhythmic burden. 

Recently, a comprehensive meta-analysis, including 38 
randomized controlled trials with 88,704 patients, demon-
strated that SGLT2 inhibitors were associated with a sig-
nificant reduction in the incidence of AF (OR 0.87, 95% 
CI 0.76-0.98, p=0.03) compared with the control group 
[9]. Nevertheless, the authors did not find any significant 
association between SGLT2 inhibitors and the incidence 
of ventricular arrhythmias (OR 1.03, 95% CI 0.84-1.26, 
p=0.77), but probably these results depict a lack of statis-
tical power, rather than a lack of effect [9]. Nonetheless, 
Lin et al. [19] reported contrasting findings, showing that 
in patients with non-advanced HF, treatment with SGLT2 
inhibitors was linked to a significantly lower risk of ven-
tricular arrhythmias and SCD.

To synthesize the most significant findings on the an-
tiarrhythmic effects of SGLT2 inhibitors, we conducted a 
comparative analysis of the most relevant primary studies 
identified in our literature search, including those previ-
ously discussed as well as several additional key publica-
tions [10, 16-18, 20–31] (Table I).

Collectively, current evidence suggests that SGLT2 in-
hibitors exert clinically meaningful antiarrhythmic effects, 
particularly in reducing AF and SCD risk, thereby posi-
tioning them as promising candidates for future recogni-
tion within antiarrhythmic therapy paradigms.

Potential physiopathological mechanisms 
involved in the anti-arrhythmic effects of 
SGLT2 inhibitors
The complex interplay between cardiac fibrosis, inflamma-
tion, oxidative stress, and autonomic nervous system dys-
regulation creates a heterogeneous environment that can 
promote arrhythmogenesis [5]. Understanding and quan-
tifying the contribution of each of these elements is crucial 
for developing effective strategies to prevent and manage 
arrhythmias, while SGLT2 inhibitors appear as promising 
agents to target these mechanisms (Figure 1).

Cardiac remodeling – fibrosis, inflammation and oxida-
tive stress
SGLT2 inhibitors have shown to modulate structural car-
diac remodeling, thereby contributing significantly to the 
management of arrhythmogenesis. A study published by 
Quagliariello et al. [32] identified that administration of em-
pagliflozin significantly reduced cardiac fibrosis and apopto-
sis induced by doxorubicin by reducing collagen 1a1, Matrix 
metalloproteinase-9 (MMP-9), and caspase-3 expression, 
pro-inflammatory markers (IL-8, IL-6, IL-1β, leukotrienes 
B4), Nuclear Factor Kappa B (NF-kB) activation, Myeloid 
Differentiation Primary Response 88 (MyD88) and Nucle-
otide-binding Oligomerization Domain – NOD -, Leucine-
Rich Repeats - LRR - and Pyrin domain-containing protein 
3 (NLRP3) expression. Consistent with the aforementioned 
findings, an experimental preclinical study identified the 
upregulation of Sirtuin 6 (SIRT6) expression that leads to 
a reduction of oxidative stress as an additional mechanism 
by which empagliflozin and dapagliflozin counteract car-
diac fibrosis [33]. Moreover, Transforming Growth Factor 
Beta (TGF-β) plays a major role in arrhythmogenesis, and 
SGLT2 inhibitors have been shown to reduce its expression 
[34]. Thus, SGLT2 inhibitors mitigate key profibrotic and 
proinflammatory pathways, thereby attenuating structural 
remodeling and limiting the anatomical substrate for ar-
rhythmogenesis.

Atrial remodeling and wall stress
Atrial remodeling serves as a well-established substrate for 
atrial arrhythmias, particularly AF [35]. Empagliflozin 
showed a significant protective effect against the develop-
ment of left atrial (LA) enlargement, interstitial fibrosis, 
and AF inducibility in T2D rats [36]. These preclinical 
findings are supported by clinical results from a second 
analysis of the EMPATROPISM trial [37] which revealed 
a significant reduction of LA volume in patients treated 
with empagliflozin versus placebo [38], thereby reflect-
ing the alleviation of diastolic dysfunction. Moreover, the 
EMPA Hemodynamics subanalysis indicated that em-
pagliflozin determined a significant improvement of LA 
function, quantified by the increase of LA strain reservoir 
and contraction phase values when compared with placebo 
[39]. These findings underscore the association between 
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SGLT2 inhibitors and the prevention of cardiac remod-
eling, a well-known contributor to arrhythmogenesis. 

Autonomic system modulation
SGLT2 inhibitors have been shown to interact with au-
tonomic nervous system (ANS), thereby modulating an-
other pathway involved in arrhythmogenesis. A preclinical 
study by Basalay et al. [40] demonstrated that prolonged 

administration of the SGLT2 inhibitor ertugliflozin in rats 
with myocardial infarction led to a significant reduction 
in infarct size compared to controls and a threefold in-
crease in the activity of vagal neurons, indicating enhanced 
parasympathetic activity. The EMBODY trial showed that 
empagliflozin produced an enhancement of the autonomic 
balance in T2D patients with acute myocardial infarction, 
but the results were significant only in the empagliflozin 

Table I. Primary research evidence regarding the impact of sodium-glucose transporter 2 inhibitors on atrial fibrillation and ventricular ar-
rhythmias

Study SGLT2 inhibitor Control Population Arrhythmia SGLT2 inhibitor effect
Follow-up  
duration

Zelniker et al. 
(2020) (18)

dapagliflozin placebo T2D who had or 
were at risk for 
atherosclerotic 
cardiovascular 
disease

AF/AFl HR = 0.81 (95% CI 0.68-0.95, p = 0.009) - reduc-
tion in first-event AF/AFl
and
IRR = 0.77 (95% CI 0.64-0.92, p = 0.005)

Median follow-up 
= 4.2 years

Butt et al. 
(2022) (20)

dapagliflozin placebo HFrEF AF HR = 0.86 (95% CI 0.6-1.22, not statistically 
significant)

Median follow-up 
= 18.2 months

Filippatos et al. 
(2023) (16)

empagliflozin placebo HFmrEF and 
HFpEF

AF Incidence of new onset AF - HR = 1.00 (95% CI 
0.77-1.29, p = 0.98)

Median follow-up 
= 26 months

Cesaro et al. 
(2022) (21)

 canagliflozin, 
dapagliflozin, 
empagliflozin

Other oral 
anti-diabetic 
agents

T2D with acute 
myocardial infarc-
tion

AF No independent effect (p = 0.03, unadjusted) In-hospital (me-
dian 5 days)

Abu-Qaoud 
et.al (2023) (29)

canagliflozin, 
dapagliflozin, 
empagliflozin, 
tofogliflozin

Non-SGLT2 
therapies

>18 year old, T2D 
patients who have 
undergone ablation

AF AF reccurence (cardioversion, new AAD use or 
redo ablation) - OR = 0.68 (95% CI 0.602-0.776) 
and
event free survival at 12 months – HR =  0.85 (95% 
CI 0.77-0.95, p = 0.003)

3 and 12 months

Ling et al. 
(2020) (22)

canagliflozin, 
empagliflozin

DPP4 inhibi-
tors

T2D AF Incidence of new-onset AF – HR = 0.61 (95% CI 
0.5-0.73, p < 0.001)

31 months

Engstrom et al. 
(Scandinavian 
Cohort Study) 
(2023) (23)

canagliflozin, 
dapagliflozin, 
empagliflozin, 
ertugliflozin

GLP-1 
receptor 
agonists

New users of 
SGLT2 inhibitors

AF New onset AF - aHR = 0.89 (95% CI 0.81-0.96)
and
as-treated HR = 0.87 (95% CI 0.76-0.99)

5 years

Kishima et al. 
(2022) (30)

tofogliflozin anagliptin AF patients with 
T2D

AF reccurence 
post ablation

AF reccurence at 12 months after catheter ablation 
– absolute reduction – 23% (p = 0.0417)

12-month follow-
up

Chan et al. 
(2022) (24)

dapagliflozin DPP4 
inhibitors, 
GLP-1RA

T2D without preex-
isting AF

AF New onset AF - compared to DPP4i – HR = 0.90 
(95% CI 0.84-0.96, p = 0.0028) and
compared to GLP-1RA - HR = 0.74 (95% CI 0.63-
0.88, p = 0.0007)

44 months

Noh et al. 
(2024) (25)

dapagliflozin placebo T2D with AF re-
fractory to AADs

AF AF recurrence – aHR = 0.15 (95% CI 0.07-0.35, p 
< 0.001)
and
after propensity score-matching – HR = 0.17 (95% 
CI 0.06-0.51, p = 0.002)

After 3-month 
blanking period

Zhao et al. 
(2023) (26)

canagliflozin, 
dapagliflozin, 
empagliflozin

Non-SGLT2 T2D patients after 
catheter ablation

AF AF reccurence – HR, 0.63 (95% CI 0.44-0.90, p = 
0.007
and
aHR = 0.58 (95% CI 0.42–0.84, p < 0.001)

18 months

Curtain et al. 
(2021) (10)

dapagliflozin placebo HFrEF VA/cardiac 
arrest/sudden 
death

HR = 0.79 (95% CI 0.63-0.99, p = 0.037)

For VA alone - HR = 0.76 (95% CI 0.53-1.10, not 
statistically significant)

Median follow-up 
= 18.2 months

Fujiki et al. 
(2024) (17)

empagliflozin placebo T2D with ICD or 
CRT-D devices

VA (VT/VF/
NSVT)

Mean difference = -1.07 (95% CI -1.29 - 0.86, p 
< 0.001)

24 weeks

Bendekit et al. 
(2024) (31)

ertugliflozin placebo HFrEF or HFmrEF 
with ICD or CRT-D

VT/VF epi-
sodes

Terminated early – no reliable statistical results 52 weeks

Cesaro et al. 
(2022) (21)

SGLT2 inhibitors Other oral 
anti-diabetic 
agents

T2D with acute 
myocardial infarc-
tion

VT/VF A lower rate of VT/VF (univariate p-value = 0.032)
and
OR - 0.20 (95% CI 0.04-0.97, p = 0.046)

5 days

Minguito 
Carazo et al. 
(2024) (27)

SGLT2 inhibitors Without 
SGLT2 
inhibitor

HF with ICD, with 
or without CRT

VA (SVT,VF, 
appropriate 
therapy – re-
sult in relevant 
VA; adding 
NSVT – result 
in all VA)

Following SGLT2 inhibitor initiation:
- all VA - OR = 0.35 (0.24-0.50, p < 0.001)
- relevant VA - OR = 0.30 (0.17-0.52, p < 0.001)

One year follow-
ing and one year 
before SGLT2 
inhibitor initiation

Hu et al. (2021) 
(28)

empagliflozin control Male Sprague 
Dawley rats

VT VT – 40% vs. 100% (p=0.008) 7 days of empa-
gliflozin adminis-
tration

AAD – antiarrhythmic drug; AF – atrial fibrillation; Afl – atrial flutter; aHR – adjusted Hazard Ratio; CI – confidence interval; CKD – chronic kidney disease; CRT-D - cardiac resynchronization therapy 
with defibrillator; DPP4 – dipeptidyl peptidase-4; GLP1 – glucagon-like peptide-1; HF – heart failure; HfmEF – heart failure with mildly reduced ejection fraction; HFpEF – heart failure with preserved 
ejection fraction; HfrEF – heart failure with reduced ejection fraction; HR – hazard ratio; ICD –implantable cardioverter-defibrillator; IRR – incidence rate ratio; NSVT – non-sustained ventricular 
tachycardia; OR – odds ratio; RR – relative risk; SGLT 2 – sodium-glucose transporter 2; SVT – sustained ventricular tachycardia; T2D – type 2 diabetes; VA – ventricular arrhythmias; VF - ventricular 
fibrillation; VT – ventricular tachycardia.
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group, with no significant differences between treatment 
and placebo arms [41]. There were also 2 clinical trials 
(EMPACT-MI and DAPA-MI) [42,43] that did not prove 
important reductions in mortality or primary composite 
outcomes regarding initiation of SGLT2 inhibitors in early 
post-myocardial infarction patients. Nevertheless, neither 
DAPA-MI nor EMPACT-MI directly evaluated arrhyth-
mic endpoints, so maybe further targeted studies will clari-
fy the potential antiarrhythmic effects of SGLT2 inhibitors 
in this setting. Thus, SGLT2 inhibitors may modulate au-
tonomic activity and hold potential antiarrhythmic effects, 
but targeted clinical studies are still needed to confirm this.

SGLT2 inhibitors and the “sodium-
interactome” pathway: mechanistics insights 
into atrial fibrillation progression
Preclinical research indicates that cardiac sodium (Na+) 
channels play a crucial role in arrhythmogenesis and are 
key targets of SGLT2 inhibitors in the prevention or mod-
ulation of atrial arrhythmias, including AF [44]. Direct 
cardiac ion channel effects represent the most immediate 
antiarrhythmic mechanism, and SGLT2 inhibitors po-
tently inhibit the late Na+ current (INaL) with impressive 
selectivity. By reducing INaL, these agents decrease action 

potential (AP) duration, prevent early afterdepolariza-
tions, and reduce arrhythmia susceptibility specifically in 
diseased hearts while sparing healthy myocardium [45]. 
For instance, empagliflozin was shown to reduce INaL in 
cardiomyocytes isolated from rodent models of HF [45]. 
Another subsequent study [46] demonstrated that INaL 
is increased in a HFpEF murine model, and that empa-
gliflozin reverses the INaL upregulation and associated ar-
rhythmogenic AP changes. 

 Homeostasis of intracellular calcium (Ca²+) plays a cru-
cial role in the pathophysiology of AF, as dysregulation of 
Ca²+ handling proteins directly contributes to arrhythmo-
genesis [47]. SGLT2 inhibitors increase sarcoplasmic/en-
doplasmic reticulum Ca2+ ATPase (SERCA2a) expression, 
improve phospholamban activity, and reduce Ca2+/calmo-
dulin-dependent protein kinase II (CaMKII) hyperactiva-
tion [47]. The net effect is more stable intracellular Ca2+ 
cycling with reduced spontaneous Ca2+ release events that 
trigger arrhythmias [47]. Empagliflozin has been shown to 
reduce cytosolic Ca2+ levels while increasing mitochondrial 
Ca2+, as well as inhibiting CaMKII phosphorylation of the 
ryanodine receptor (RyR) [48]. Improved SERCA2a and 
RyR2 function, along with reduced CaMKII hyperphos-
phorylation, facilitate the suppression of abnormal Ca2+ 

Fig. 1. Multifaceted antiarrhythmic pathways mediated by sodium-glucose transporter 2 (SGLT2) inhibitors – an integrative approach 
- There are at least five main mechanisms by which SGLT2 inhibitors may exert their potential antiarrhythmic effects: 1. Antifibrotic and anti-inflam-
matory effects: decreasing Transforming Growth Factor Beta (TGF-β), collagen 1a1, Matrix metalloproteinase-9 (MMP-9), caspase-3, IL-8, IL-6, 
IL-1β, leukotrienes B4, Nucleotide-binding Oligomerization Domain – NOD -, Leucine-Rich Repeats - LRR - and Pyrin domain-containing protein 3 
(NLRP3), Nuclear Factor  Kappa B (NF-kB), Myeloid Differentiation Primary Response 88 (MyD88), reactive oxygen species (iROS), malondialdehyde 
(MDA), 4- Hydroxynonenal - 4-HNE, Hypoxia-Inducible Factor 2 Alpha (HIF-2α) and increasing Sirtuin 6 (SIRT 6) pathway and M2 (anti-inflammatory) 
over M1 (pro-inflammatory) macrophage phenotype; 2. Prevention of atrial remodelling (reducing left atrium – LA - volume and increasing left atrium 
strain); 3. Modulation of autonomic nervous system through reduction of heart rate variability (HRV); 4. Targeted effects on ionic channel activity: 
decreasing action potential duration (APD), QT, refractoriness, late sodium current (INaL), peak sodium current, Na+- H+ exchanger, Ca2+/calmod-
ulin-dependent protein kinase II (CaMKII), increasing Sarcoplasmic/endoplasmic reticulum Ca2+- ATP - ase (SERCA2a) activity and having different 
effects on potassium channels` currents; 5. Optimization of metabolic processes through increased ketone body utilization, leading to elevated ATP 
production in cardiomyocytes.
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release and promote electrical stability [49]. 
In addition to the involvement of Na+ and Ca²+ chan-

nels in the antiarrhythmic effects of SGLT2 inhibitors, 
potassium (K+) channels may also play a significant role. 
A recent study demonstrated that acute administration of 
dapagliflozin (100 µM) in Xenopus laevis oocytes express-
ing human cardiac K+ channels led to a significant stim-
ulating effect on two-pore-domain potassium channels 
(K2P2.1 and K2P17.1) [50]. AF has been associated with 
downregulation of K2P2.1 and K2P17.1 channels, suggest-
ing that SGLT2 inhibitors may help reduce the incidence 
of AF by shortening atrial APs through modulation of K+ 
channels [50]. 

By exerting multichannel cardiac effects-modulating 
Na+, Ca²+, and K+ currents-SGLT2 inhibitors contribute 
to the stabilization of electrical activity and may reduce 
susceptibility to arrhythmias.

Current limitations and future directions 
regarding SGLT2 inhibitors and their potential 
antiarrhythmic properties
It is important to emphasize the need for future rand-
omized controlled trials that should specifically assess the 
antiarrhythmic efficacy of these agents as primary end-
points. Moreover, further experimental research, espe-
cially in vitro studies, is essential to precisely elucidate the 
off-target mechanisms by which SGLT2 inhibitors act on 
the heart and to explore their potential interactions with 
current AADs. Contradictory findings concerning the ef-
fects of gliflozins on ion channel modulation, along with 
variations in dosage, duration of exposure, differential 
responses between atrial and ventricular cardiomyocytes, 
and potential interactions with standard AADs and other 
antidiabetic agents, represent critical areas that indicate the 
need for further systematic research. 

However, while multiple research directions are emerg-
ing, there remains a critical need to move beyond observa-
tional associations and establish definitive cause-and-effect 
relationships - an objective that, although essential, is fre-
quently challenging to achieve.

Conclusions
SGLT2 inhibitors are versatile compounds with a revolu-
tionary advance in cardiac arrhythmia prevention, with a 
possible adjuvant antiarrhythmic role, particularly in the 
management of atrial arrhythmias, with AF being the most 
common. 

The antiarrhythmic effects of SGLT2 inhibitors, like 
their cardiovascular benefits, were initially serendipitous 
discoveries, suggesting that these molecules may soon 
warrant formal recognition within a revised classification 
system of antiarrhythmic drugs. Their unique ability to si-
multaneously target the arrhythmogenic triad, substrate, 
trigger, and autonomic modulation, through integrated 
metabolic and electrophysiological mechanisms, empha-
sizes the possible advent of a new AAD class.
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