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Background and aim: Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in reproductive-aged women, characterized
by hormonal imbalances, anovulation, and metabolic abnormalities. This systematic review aims to evaluate the effectiveness, types, and di-
agnostic performance of ML algorithms applied in PCOS detection and classification, and to identify the most frequently used input features
and methodological challenges in existing studies.

Methods: A systematic search was conducted across scholarly databased, but not limited to PubMed, Scopus, and Google Scholar for
studies published between 2014 and 2024 using keywords related to PCOS and machine learning. Inclusion criteria focused on original,
peer-reviewed studies applying ML models for PCOS diagnosis. Data were extracted on model type, input features, diagnostic accuracy,
and study design. Quality assessment was performed using the PROBAST tool.

Results: Out of 450 identified studies, 34 met the inclusion criteria and passed the quality assessment. Supervised learning models such
as Random Forest, SVM, and XGBoost showed high accuracy (up to 99%). Deep learning approaches, particularly Convolutional Neural
Networks (CNNs), achieved accuracies between 95% and 99.89% in analyzing ultrasound images. Hybrid models integrating clinical and
imaging data further enhanced performance. Common input features included BMI, LH/FSH ratio, AMH, and ultrasound-based ovarian
morphology. However, few studies validated models on external datasets, and input feature selection lacked standardization.

Conclusion: Machine learning models such as supervised, deep learning, and hybrid approaches show strong potential in improving PCOS
diagnosis by identifying complex patterns across multi-dimensional datasets. Challenges such as limited generalizability and data standard-
ization remain, therefore future studies should focus on developing explainable ML tools, validating models in clinical settings, and leveraging
diverse data types for robust, personalized PCOS diagnosis.
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Introduction

Polycystic Ovary Syndrome (PCOS) is a complex endo-
crine and metabolic disorder that affects reproductive-aged
women. It is characterized by hormonal imbalances, irreg-
ular ovulation, and metabolic disturbances [1]. Although
the exact cause of PCOS remains uncertain, it is believed
to arise from a combination of genetic, environmental, and
lifestyle factors [2]. Early diagnosis and personalized man-
agement are crucial to preventing long-term complications
such as infertility, type 2 diabetes, and cardiovascular dis-
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eases. While medical treatments and lifestyle interventions
can significantly improve quality of life, the heterogeneous
nature of PCOS complicates its diagnosis and treatment
[1,2,4,5].

Given this complexity, multiple diagnostic criteria have
been developed, each with distinct strengths and limita-
tions. The Rotterdam Criteria (2003), endorsed by the
European Society of Human Reproduction and Embry-
ology (ESHRE) and the American Society for Reproduc-
tive Medicine (ASRM), remain the most widely accepted.
These criteria define PCOS as the presence of at least two
of the following three features: oligo-or anovulation, hy-
perandrogenism (clinical or biochemical), and polycystic



ovarian morphology (PCOM) on ultrasound, after exclu-
sion of other endocrine disorders [6]. Although broad and
inclusive, these criteria also encompass a wider spectrum
of phenotypes, which may contribute to potential overdi-
agnosis in some cases [7,8].

In the era of artificial intelligence, Machine Learning
(ML) models present a promising approach for enhanc-
ing diagnostic precision, by analysing large-scale datasets
including hormonal, metabolic, ultrasound, and genetic
information ML can identify hidden patterns not easily
recognized through conventional methods. This ability
supports more accurate diagnosis, risk stratification, and
the design of personalized treatment plans [4,9]. Various
ML algorithms, such as Decision Trees, Support Vector
Machines (SVM), and Deep Learning approaches includ-
ing Convolutional Neural Networks (CNNs), have dem-
onstrated superior performance compared with traditional
diagnostic methods in distinguishing PCOS from related
conditions, predicting disease progression, and classifying
phenotypes [7,10].

This systematic review provides a qualitative synthesis of
studies exploring ML applications in PCOS diagnosis and
risk assessment. Considering the heterogeneity of PCOS
and the limitations of current diagnostic criteria, ML
models offer the capacity to integrate diverse data types
hormonal, metabolic, imaging, and genetic to uncover
patterns that traditional methods may overlook. Through
this review, we are exploring the effectiveness of various
ML techniques reported in improving diagnostic accuracy,
enhancing phenotype classification, predicting disease tra-
jectories, and informing optimized diagnostic approaches.

Materials and methods

This systematic review was conducted according to the
published protocol in Open Science Frame work- OSF
(accessible through the linkshttps://doi.org/10.17605/
OSEIO/PDNEY) We adhered to the Preferred Reporting
Items for Systematic Reviews (PRISMA) Updated Guide-
lines 2020 on reporting the findings. The article selection
process is comprehensively illustrated in the PRISMA
flowchart (Figure 1).

Search Strategy
The literature search was conducted in scholarly data bases
but not limited to PubMed (National Library of Medi-
cine), Scopus (Elsevier), and Google Scholar (Google),
focusing on studies published between 2014 and 2024.
Only peer-reviewed primary research articles on PCOS di-
agnosis using Machine Learning (ML) were considered for
review. A detailed inclusion and exclusion process was ap-
plied to ensure relevance, prioritizing studies that explored
ML models, Al-based diagnostic approaches, and compu-
tational methods for PCOS classification and prediction.
Boolean operators such as AND” and ‘OR’ were utilized
to refine the search results, incorporating Medical Subject
Headings (MeSH) terms and keywords: (“Polycystic Ova-
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ry Syndrome”[MeSH Terms] OR “PCOS”) AND (“Ma-
chine Learning” OR “Artificial Intelligence” OR “Neural
Networks” OR “Deep Learning”) AND (“Prediction” OR
“Diagnosis” OR “Modeling”). The search was restricted to
open-access, full-text studies published in English within
the last 10 years, ensuring access to the most recent ad-
vancements in ML-driven PCOS diagnostics.

Eligibility Criteria

The eligibility criteria for studies in this systematic review
were precisely defined to ensure the inclusion of scientifi-
cally sound and relevant studies on the application of ML
in PCOS diagnosis. The review considered those studies
that applied ML algorithms for predicting, diagnosing, or
classifying PCOS. Only fully open-access, peer-reviewed
studies published between January 2014 and December
2024 were included to ensure relevance to recent advance-
ments in Al-driven healthcare solutions.

Studies that utilized detailed and scientifically validated
methodologies for applying ML techniques to PCOS diag-
nosis, risk prediction, or phenotyping were included. Con-
versely, studies published in languages other than English,
studies that did not employ ML or Al models as a core
analytical method, and those focusing solely on tradition-
al diagnostic criteria without computational approaches
were excluded. Conference presentations, editorials, and
non-peer-reviewed articles were also excluded to maintain
methodological rigour.

Data Management

The first, second, and third authors independently con-
ducted data extraction and preliminary screening of study
titles and abstracts. The fourth and fifth authors then per-
formed a full-text review to assess eligibility based on the
predefined inclusion criteria. Any discrepancies were re-
solved through discussion or consultation with the other
authors to ensure consensus.

For each eligible study, key data were systematically
tabulated, including details such as first author, year of
publication, study title, study design, sample size, type
of Machine Learning model used, features analyzed (e.g.,
hormonal, metabolic, imaging data), performance metrics
(e.g., accuracy, sensitivity, specificity), and conclusions re-

garding the effectiveness of ML in PCOS diagnosis.

Quality assessment

The quality of the studies included in this systematic re-
view was assessed using PROBAST (Prediction model Risk
of Bias Assessment Tool). PROBAST is a widely recog-
nized tool designed to evaluate the risk of bias (ROB) and
applicability concerns in studies developing, validating, or
updating predictive models in healthcare. Two authors in-
dependently conducted the quality assessment and ensured
that the included studies provided robust, unbiased, and
clinically relevant findings.
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Fig. 1. Study flowchart

Results and discussion

The initial literature search across three databases yielded
450 records. After removing 85 duplicates, 188 ineligi-
ble records, and 22 for other reasons, 155 studies were
screened. Following this, 92 studies were excluded based
on relevance, leaving 63 for full-text retrieval. Out of these,
12 studies were not retrievable, and 51 were assessed for
eligibility. Seventeen studies were excluded due to the high
risk of bias, resulting in 34 studies meeting the inclusion
criteria. These studies employed various machine learning
techniques to investigate ML models in PCOS diagnosis
and risk stratification, representing contributions from
countries like Bangladesh, China, Finland and Sweden,
India, Saudi Arabia, South Korea, Egypt, United Kingdom
(UK), United States of America (USA) and Mexico (See
Table 1).

Different ML models in PCOS prediction

The accuracy of ML models in PCOS prediction varied
from 82.1% to 99.89%. Different types of ML models
were used in the studies, such as Supervised Learning, Un-

supervised Learning, Deep Learning, Ensemble Learning,

and Hybrid Models.

Supervised Learning models

This is a type of ML where models are trained on labelled
datasets, meaning the algorithm learns from input-output
pairs. Logistic Regression, Random Forest, Support vector
machines (SVM) and KNN are some examples of super-
vised machine learning models used in the studies. These
models are used for predicting PCOS based on clinical and
biochemical data. Among them, Random Forest and SVM
perform well due to their ability to handle high-dimen-
sional datasets and complex patterns [4,9] (Figure 2).

The logistic regression model was used as a baseline
model in PCOS prediction studies and reported a moder-
ate accuracy of 82%- 92%. Moreover, it is observed that
this model works well with clinical and biochemical mark-
ers, but struggles with non-linearity in complex datasets
[11,12].

In SVM, they use hyperplanes to separate data points
into distinct classes with maximum margins and achieve an
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(Continued from page 5)

Author, Year

Accuracy

Other Outcomes

Inputs Used

Type of ML
Bangladesh

Country

No direct mention of adverse ef-

Clinical data including age, weight, height, BMI, blood group,
pulse rate, respiratory rate, hemoglobin levels, cycle length,

RF, AdaBoost, LR, DT, XGBoost, SVM, Multilayer

Perceptron

Rahman et al., 2024 [27]

fects, but comparisons with other
ML models show reduced false

marriage status, pregnancy history, hormone levels (FSH, LH,

positives and improved detection

rates

TSH, AMH, PRL, Vit D3, PRG), RBS, weight gain, hair growth,

skin darkening, hair loss, pimples, fast food consumption,

exercise habits, blood pressure, follicle count, and endome-

trial thickness.

False positives and false negatives
were analyzed using SHAP and

Clinical parameters: BMI, pulse rate, blood pressure, men-

LR, DT, RF, SVM, NB

KNN

India

Khanna et al., 2023 [28]

strual cycle length, waist-hip ratio, Biochemical markers: LH,

FSH,

LIME explainability tools. Balanc-

AdaBoost
XGBoost

ing techniques like SMOTE were

AMH, PRG, PRL, Hb, Beta-HCG

applied to mitigate class imbalance

Other attributes: Skin darkening, hair growth, weight gain,

acne.

ExtraTrees

Stacking models

False positives and false negatives

are reported in the confusion

hormonal levels (FSH, LH, PRL, AMH, TSH, PRG), BMI,

weight gain, cycle length, and follicle number.

Ensemble learning methods, including voting hard,

voting soft, and CatBoost.

Bangladesh

Bharati et al.,
2022 [29]

matrix. The study highlights the

reduction in computational time by

using only 13 features.

Abbreviations: AMH: Anti-Mdillerian Hormone, AND: Androstenedione, ANN: Artificial Neural Network, BLSTM: Bi-directional Long Short-Term Memory, BMI: Body Mass Index, BP: Blood Pressure, CART: Classification and Regression Tree, CNN: Convolutional Neural

Network, DHEAS: Dehydroepiandrosterone Sulfate, DL: Deep Learning, DT: Decision Tree, FSH: Follicle-Stimulating Hormone, GAN: Generative Adversarial Network, GBM: Gradient Boosting Machine, KNN: K-Nearest Neighbors, LASSO: Least Absolute Shrinkage and

Selection Operator, LH: Luteinizing Hormone, LR: Logistic Regression, LSTM: Long Short-Term Memory, MLP: Multilayer Perceptron, NB: Naive Bayes, RF: Random Forest, RNN: Recurrent Neural Network, SGD: Stochastic Gradient Descent, SHBG: Sex Hormone

Binding Globulin, SMOTE: Synthetic Minority Oversampling Technique, SVM: Support Vector Machine, TSH: Thyroid-Stimulating Hormone, UML: Upper Menstrual Length, USG: Ultrasonography, XAl: Explainable Artificial Intelligence, XGB: Extreme Gradient Boosting
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accuracy rate of 85%- 98%. It is notable that SVM models
were most effective when used with hormonal and meta-
bolic markers such as AMH, LH/FSH ratio, and insulin
resistance indices.

Even though these models are effective, researchers
noted that for larger data sets they are a computationally
expensive option and sensitive to feature scaling, requiring
careful preprocessing [1,13].

The Random Forest model is an ensemble learning
method that builds multiple decision trees and averages
their outputs for better stability and accuracy. The stud-
ies analysed reported that this model is robust in handling
missing data and feature redundancy with a high accuracy
0f 95%- 99% in PCOS datasets. As in other models, they
are highly effective when trained on a combination of
clinical, biochemical, and imaging features. It is noticeable
that this model is computationally expensive and model
interpretability is lower compared to Logistic Regression
or Decision Trees [14,15,16].

KNN model, classifies new cases based on the majority
class of k-nearest data points. Only a limited number of
studies used this model and reported an accuracy ranging
from 80%- 90%. KNN is effective for datasets with low
noise and clear separation between PCOS and non-PCOS
cases, but in larger datasets, their computational ineflicien-
cy will be a factor of concern, along with the requirement
for careful tuning of k-values [4,14,17].

XGBoost (Extreme Gradient Boosting) is another im-
portant supervised learning model that uses gradient
boosting techniques to create a strong classifier by itera-
tively correcting weak models. This model demonstrated
high accuracy (96%-99%), often outperforming tradition-
al supervised models. It is highly effective for structured
clinical data and fast for larger datasets. Moreover, this
model works well in imbalanced PCOS datasets by adjust-
ing weighting factors. Although the complexity of training
and tuning this model is high compared to other models,

its accuracy and ability to handle larger datasets outweigh
this challenge [1,18,19].

Unsupervised Learning models

In the unsupervised machine learning approach, the model
finds hidden patterns in unlabeled data without predefined
outcomes. In PCOS diagnosis supervised ML is domi-
nant because labelled medical datasets are used as inputs,
while unsupervised ML can help identify new PCOS sub-
types. Examples of unsupervised MLs identified include,
K-Means Clustering, Hierarchical Clustering, DBSCAN,
Principal Component Analysis (PCA) etc (Figure 3).

The “K-Means Clustering” model groups data points
into K clusters based on their similarity. The algorithm it-
eratively assigns each data point to the nearest cluster cen-
troid until convergence. Studies used this model in PCOS
metabolic profiling to classify patients into distinct meta-

bolic-risk groups (e.g., insulin-resistant PCOS vs. normo-
insulinemic PCOS) and also found that, PCOS patients
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Fig. 2. Workflow of supervised machine learning models for the diagnosis of PCOS. Clinical and biochemical data
undergo preprocessing, including feature scaling, followed by model selection and training using supervised algo-
rithms such as logistic regression, random forest and SVM, KNN and XGBoost.
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Fig. 3. Framework of unsupervised machine learning models applied for PCOS diagnosis using unlabelled medical datasets. The
process begins with data preprocessing, followed by the application of various unsupervised learning techniques including K-means
clustering (requiring pre-specification of cluster number and offering computational efficiency), hierarchical clustering (which is sensi-
tive to outliers but does not require cluster pre-specification), principal component analysis (PCA) for dimensionality reduction at the
cost of interpretability, and autoencoders, which are more powerful than PCA for feature extraction but demand high computational

resources.

could be categorized into mild, moderate, and severe meta-
bolic subtypes based on this. This is a computationally ef-
ficient model Effective for identifying phenotypic clusters
within PCOS populations. However, this model requires
pre-specifying the number of clusters (K), which may lead
to incorrect grouping and does not handle overlapping
PCOS subtypes well, as some cases have mixed metabolic
and hormonal characteristics [20].

The hierarchical Clustering model builds a tree-like hi-
erarchy of clusters, grouping data points based on their
proximity. Studies used this model to identify subtypes of
PCOS based on biochemical and clinical markers, for ex-
ample classifying PCOS phenotypes based on hormonal vs.
metabolic dominance. This model has some added advan-
tage in that, it does not require pre-specifying the number
of clusters, unlike K-Means and provides a detailed view
of relationships between PCOS subtypes. Model is com-

putationally expensive for large datasets and is Sensitive to
outliers, which can distort clustering results [4,21,22].
The Principal Component Analysis (PCA) model reduc-
es the dimensionality of data by transforming correlated
variables into a smaller set of independent components,
preserving variance. This model is applied by studies to
identify key biomarkers driving PCOS classification and
helped in removing redundant features, improving model
efficiency. Even though this model can simplify high-di-
mensional PCOS datasets, it may lead to loss of interpret-
ability as transformed variables do not have direct clinical
meaning, moreover works best when features are linearly
related, which may not always be the case in PCOS [23,24].
Autoencoders (Deep Learning-based Unsupervised
Model) is a type of neural network that learns to compress
and reconstruct input data, capturing key feature repre-
sentations. Studies applied this model in PCOS prediction



models combining clinical and imaging data and was able
to detect hidden correlations between PCOS markers. The
added advantage of this model is that, it is more power-
ful than PCA for feature extraction and can be trained on
large, unlabeled datasets. Even though, compared with tra-
ditional clustering methods, this model is not easy to in-
terpret and requires high computational power [9,21,25].

Deep Learning models

Deep learning is a subset of ML that uses neural networks
with multiple layers to automatically extract features and
recognize patterns. Deep learning models like CNN (Con-
volutional Neural Networks), ResNet, YOLOvVS8 etc are
used in identified studies. Among these CNN-based mod-
els, is highly effective in analyzing ultrasound images for
PCOS diagnosis, extracting features such as follicle count
and ovarian morphology with high accuracy [21,24,25]
(Figure 4).

Convolutional Neural Networks (CNNs) are specifi-
cally designed to extract spatial features from image data.
They utilize convolutional layers, pooling layers, and fully
connected layers to identify patterns, making them par-
ticularly suitable for analyzing ultrasound images. Research
studies have employed CNNs to assess ovarian ultrasound
images, focusing on features such as follicle count, ovarian
volume, and cystic patterns, with reported accuracies rang-
ing from 95% to 99.89% [7,20]. A significant advantage
of CNN models is their ability to detect subtle variations
in ovarian morphology, alongside their capacity to auto-
mate feature extraction, which minimizes the need for hu-
man annotation. However, there are some limitations to
consider, including the necessity for large, well-annotated
image datasets for training and the high computational
demands, which can increase the risk of overfitting when
dealing with small datasets [7,26].

ResNet (Residual Neural Network) was applied in PCOS
ultrasound classification tasks, often combined with other
models such as U-Net for enhanced segmentation. One
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study reported over 92% accuracy using ResNet18 for fol-
licle segmentation, showing robust feature extraction even
in noisy medical images. ResNet is effective for deep archi-
tectures, enabling complex pattern learning without van-
ishing gradients. As in other deep learning models, ResNet
also requires large-scale datasets and high computational
resources, moreover, training time is longer compared to
CNN [27].

Another important model is YOLOvS, which is an ob-
ject detection framework optimized for real-time image
analysis, capable of identifying multiple objects in a sin-
gle frame. Studies used this model to detect ovarian cysts
or follicles in ultrasound images of PCOS patients and
combined with custom CNNs to improve classification
accuracy to 97.5%, outperforming traditional detection
techniques. YOLOWVS is a fast and accurate model suitable
for real-time diagnostic tools. Just like in other models,
YOLOWS also requires custom fine-tuning for optimal per-
formance in medical imaging [28].

Some studies combined deep learning for feature ex-
traction with classical ML algorithms like Random For-
est or XGBoost for final classification. A study integrated
CNN-based image features with clinical data processed by
XGBoost, achieving accuracy above 98%, whereas another
study combined ResNet feature maps with an SVM classifier
for better generalization. These hybrid deep learning models
also require advanced integration pipelines and tuning.

Ensemble Learning

Ensemble Learning combines multiple ML models to im-
prove accuracy and robustness by reducing biases and vari-
ance. Studies used Ensemble Learning models like Stack-
ing models, Voting Classifiers, XGBoost, Bagging methods
etc. The advantage of Ensemble Learning models over
other models is, that they can enhance PCOS prediction
accuracy by combining the strengths of Random Forest,
Decision Trees, and Boosting methods, leading to more re-
liable diagnostic models [7,1,29] (Figure 5).

Data Processing
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(95%0-99.89%) enhanced segmentation
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(over 92% accuracy)
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(Object Detection L Hyb-nd Deep
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Fig. 4. Deep learning models identified for the diagnosis of Polycystic Ovary Syndrome (PCOS) using ultrasound imaging and clinical data.
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Fig. 5. Ensemble learning models identified for the diagnosis of Polycystic Ovary Syndrome (PCOS) using multimodal biomedical data

XGBoost (Extreme Gradient Boosting) is an optimized
implementation of gradient boosting, which was widely
adopted for its efficiency and scalability. XGBoost was used
in a hybrid architecture combining biochemical markers
and image-derived features. The model achieved accuracy
>98% and sensitivity of 96%, outperforming both Ran-
dom Forest and CNN when used independently [7,13].
Another study by Suha & Islam (2022) demonstrated XG-
Boost’s superior performance in classifying PCOS using
clinical datasets from South Asia. Here, ensemble boost-
ing proved particularly valuable in handling imbalanced
class distributions, which often skew predictions in PCOS
research.

Another important ensemble learning model is the Vot-
ing and Stacking Classifiers. This model aggregate predic-
tions from multiple models (e.g., SVM, KNN, Decision
Trees) by majority voting (hard voting) or averaging prob-
abilities (soft voting). Lv et al. (2022) applied a soft-voting
ensemble combining SVM, Decision Trees, and Random
Forest. The model achieved 95.2% accuracy, significantly
higher than any of the base models alone. This fusion al-
lowed the classifier to balance precision and recall, which
is crucial for reducing false negatives in PCOS detection.
Another study by Rachana et al. (2021) implemented a
stacked ensemble architecture where Logistic Regression
served as the meta-learner combining outputs from base
models. This stacking ensemble reached 93.6% accuracy
and showed better generalization on external validation
datasets than individual models.

Almost all ensemble models reported accuracy above
90%, with some exceeding 98%, especially in hybrid mod-
els combining clinical and imaging data. However, models

like XGBoost require intensive computation, especially in
parameter tuning. The performance of ensemble models is
often contingent on high-quality, well-pre-processed data.
Poorly handled missing values or inconsistent labelling can
reduce their effectiveness.

Hybrid Models

This is a combination of different ML approaches (e.g.,
Supervised + Deep Learning or Ensemble + Unsupervised
Learning) to optimize performance. The best-performing
combinations identified in the review are CNN + XGBoost,
ResNet + Random Forest, Hybrid Neural Networks. Hy-
brid models are designed to combine clinical and imaging
data, leveraging deep learning for image feature extraction
and supervised ML for structured data analysis, offering a
comprehensive diagnostic approach [15,23].

One of the most notable hybrid models was presented
by Kermanshahchi et al. (2024), where a Convolutional
Neural Network (CNN) was used to extract features from
ovarian ultrasound images, and XGBoost was used as the
final classifier. This combination resulted in an outstand-
ing diagnostic accuracy of 98.9%. The CNN component
learned spatial features such as follicle distribution, while
XGBoost processed those features along with clinical in-
puts (e.g., BMI, AMH). This hybrid design enabled both
high feature abstraction and classification robustness, ad-
dressing the shortcomings of using CNN or XGBoost
alone.

In another hybrid approach, Rachana et al. (2021) im-
plemented a model combining ResNet (a deep convolu-
tional architecture) for feature extraction with a Support

Vector Machine (SVM) as the classifier. This model was



10

particularly effective in distinguishing between PCOS and
non-PCOS ovarian ultrasound images, reporting an accu-
racy of 94.2%.

Suha & Islam (2022) implemented a hybrid strategy that
integrated CNN for image-based feature learning with an
ensemble voting classifier (Random Forest + Logistic Re-
gression + SVM) for diagnosis. This model achieved a clas-
sification accuracy of 95.6%. The hybrid ensemble compo-
nent allowed the system to weigh decisions across models,
reducing the likelihood of bias from any one classifier.

The hybrid ML models represent a significant advance-
ment in the application of Al to PCOS diagnosis, where
the studies have demonstrated that the hybrid architectures
can outperform standalone models, achieving diagnostic
accuracies exceeding 95%. These models are especially ef-
fective in multimodal analysis [7,19,29].

Input features used for ML model training

The effectiveness of an ML model largely depends on the
quality and relevance of the input features used for train-
ing. Studies have used different input variables, ranging
from hormonal markers (AMH, LH/FSH ratio, testoster-
one), metabolic indicators (BMI and insulin resistance),
and clinical symptoms (hirsutism, menstrual irregulari-
ties), ultrasound imaging parameters (Ovarian volume,
follicle count) (Figure 6). None of the included studies had
a standardised approach to feature selection, which may
have resulted in the variability in diagnostic performance
[31]. Our qualitative analysis of the 34 studies indicates
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that no single feature can accurately diagnose PCOS. But a
combination of biochemical, metabolic, and imaging fea-
tures yields the best results.

Based on the comparative analysis, the most effective
features for training ML models in PCOS diagnosis in-
clude; AMH and LH/FSH ratios, which are the strong-
est hormonal predictors of PCOS and ultrasound-based
features are best for deep learning approaches. However,
for higher accuracy and generalizability of results, a com-
bination of different input features is preferable. These hy-
brid models integrating clinical, biochemical, and imaging
data provide the most robust predictions, but require high
computational power and large-scale datasets for optimal
performance [30,31].

Discussion

The studies in our review consistently demonstrate that
machine learning can markedly improve PCOS diagnosis
accuracy, often exceeding 90% and even approaching near-
perfect performance in controlled settings, especially deep
learning models analyzing ultrasound images achieved ex-
ceptionally high accuracy. Suha and Islam (2022) reported
99.89% accuracy using a CNN with ensemble methods,
and Kermanshahchi et al. (2024) even reported ~100% ac-
curacy and sensitivity on their ultrasound image dataset.
These results show accuracy of image-based deep learn-
ing to detect the polycystic ovarian morphology; however,
they may also reflect overfitting or limited sample diversity,
since perfect classification is rare in clinical practice [1, 11].

4 6 8

Count

Fig. 6. Represents the most important input features used to train ML models. The bar graph illustrates how often these inputs were used
in studies, with 70% of the studies incorporating BMI, while 50% included AMH, LH, and hair growth as key features. Only input features that
were considered in at least 20% of the studies were included in the visualization [30,31].
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In contrast, models using traditional clinical and bio-
chemical data showed strong but slightly lower perfor-
mance. For instance, Bharati et al. (2020) used a hybrid
Random Forest-Logistic model on a clinical dataset and
achieved about 91% accuracy with 90% recall. Similarly
other studies found Random Forest most effective on tabu-
lar clinical features (attaining ~89-91% accuracy) (8,16,
29] . These conventional ML models benefit from inter-
pretability and highlight key predictors (e.g. FSH/LH ra-
tio, identified as highly informative by multiple studies),
but they may miss complex nonlinear patterns compared
to deep networks.

It is also notable that, not all approaches achieved such
high accuracy, a few demonstrated the challenges in PCOS
detection.Sumathi et al. (2021) developed a CNN for
classifying ovarian cysts and reached only ~85% accuracy,
likely due to limited training data and a simpler network.
Likewise, Lim et al. (2023) explored a novel non-invasive
diagnostic avenue using radial pulse wave analysis, but
reported a modest overall accuracy of 72%. This lower
performance suggests that emerging modalities (e.g. pulse
signals or experimental biomarkers) may not yet be as sen-
sitive or specific as conventional hormone and imaging
features [6,14].

Some models in the literature emphasize sensitivity,
whereas others sacrifice sensitivity for specificity [11]. Luo
etal. (2019)’s logistic model using three serum biomarkers
attained 82.1% sensitivity at 92.3% specificity, a respect-
able balance, but it could miss nearly 18% of cases [5].
In summary, while many ML models show excellent di-
agnostic accuracy for PCOS, the few that underperform
highlight that adequate data quality, feature selection, and
model choice are crucial to achieving both high sensitivity
and specificity. Models built on small or narrowly selected
populations (e.g. non-obese women) or unconventional
data sources tend to have lower generalizability.

The ensemble and hybrid models have emerged as top
performers in several studies, Alam Suha et al. (2023) com-
bined five classifiers in a stacking ensemble and improved
accuracy to ~95.7%, notably reducing false positives/
negatives compared to any single algorithm [1]. Ensem-
ble methods capitalize on the complementary strengths
of different algorithms, often yielding higher robustness.
However, they can be complex and less interpretable. Sim-
pler classifiers like Support Vector Machines and Random
Forests were frequently among the best performers in in-
dividual [25]. These supervised learning models are rela-
tively interpretable and, with proper feature selection, can
achieve high accuracy with lower computational cost.

On the other hand, deep learning particularly CNNs,
excels in tasks involving imaging data. Multiple studies
showed that CNN-based analysis of ovarian ultrasound
images can detect polycystic morphology with high pre-
cision; Rachana et al., 2021 achieved 97% accuracy us-
ing a KNN classifier after image feature extraction, and a

custom CNN “F-Net” by Sowmiya et al., 2024 achieved
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~97.5% on ultrasound images [3,4]. Deep networks can
capture subtle features, such as follicle distribution or stro-
mal texture beyond human vision, but they require larger
datasets for training; when sample size was small, perfor-
mance could suffer or models risk overfitting [11].

Across these diverse approaches, certain predictors of
PCOS consistently emerged. Features related to reproduc-
tive hormones were dominant: the LH to FSH ratio was
highlighted as a pivotal feature in numerous studies, align-
ing with clinical understanding of PCOS endocrine pro-
files. High serum AMH levels, reflecting increased follicle
count, also frequently contributed to model predictions
[10]. Anthropometric and metabolic features like BMI,
ovarian ultrasound follicle count, menstrual cycle irregu-
larity, and markers of insulin resistance are the other im-
portant inputs in many models. These common predictors
underscore that ML algorithms, when properly trained, are
identifying known hallmarks of PCOS.

Nonetheless, some models have incorporated novel fea-
tures also, such as Lv et al. (2022) successfully used ocu-
lar images (scleral blood vessel patterns) to detect PCOS
with ~93% accuracy, hinting at systemic manifestations of
PCOS that could expand diagnostic modalities [2]. Like-
wise, a few studies have explored genetic and molecular
markers as inputs, which may improve understanding of
PCOS pathophysiology. These novel approaches, while
promising, often suffered from small sample sizes and re-
quire further validation.

This collective evidence suggests that ML, if rigorously
developed, could become a valuable adjunct to conven-
tional PCOS diagnosis. Currently, the diagnostic process
for PCOS is fraught with variability, different specialists
may emphasize Rotterdam criteria vs. androgen excess cri-
teria, leading to inconsistent diagnoses. Al models offer a
chance to standardize this by objectively combining mul-
timodal data.

Another emerging benefit of ML in this field is the abil-
ity to uncover PCOS subtypes and comorbid risk patterns.
Since PCOS is heterogeneous in clinical presentation,
clustering and advanced models could stratify patients into
phenotypes, each requiring tailored management [31].

Despite these promising results, our systematic review is
not without limitations. Our synthesis depended on ma-
jority of studies that relied on single-center datasets with
limited ethnic diversity, restricting external generalizability.
Very few studies validated models using independent ex-
ternal cohorts, raising concerns about overfitting. Moreo-
ver, the lack of standardized feature selection frameworks
contributed to wide variability in input data, complicating
direct comparison between models. In addition to all, we
restricted inclusion of our review to English-language and
open-access publications from 2014-2024, which may have
excluded relevant studies published outside these criteria.

There is an inherent publication bias toward positive
findings in this field, studies reporting high accuracies are
more likely to be published, skewing the overall picture.
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We also observed high heterogeneity in study designs and
outcome reporting. A formal meta-analysis was not feasi-
ble due to differing performance metrics such as accuracy,
AUC, F1-score and varied endpoints where, some focused
on binary diagnosis, others on subclassification. Instead,
we synthesized the findings qualitatively.

Despite these caveats, the insights gained are valuable
for guiding future research. Our review identifies success-
ful strategies that future studies can build upon. It also flags
common pitfalls to avoid, such as lacking external valida-
tion or ignoring the interpretability of models. Moving
forward, larger multi-center studies and prospective trials
are needed to test the most promising ML models in real
clinical workflows. Collaboration between data scientists
and clinicians will be key to ensure that models address
real-world diagnostic challenges and are evaluated against
current gold standards. In summary, even with certain lim-
itations, this review provides a comprehensive overview of
the state of ML in PCOS diagnosis and underscores a clear
trend: data-driven approaches hold great promise to aug-
ment clinical decision making in PCOS, offering earlier
detection and more consistent, personalized care. Future
studies can leverage our findings to refine Al models aim-
ing not just for high accuracy in a research setting, but for
robust, generalizable tools that improve patient outcomes
in everyday clinical practice.

Conclusion

Machine learning models have significant potential to im-
prove diagnostic accuracy in the identification of Polycys-
tic Ovary Syndrome. Supervised models have shown high
predictive accuracy when trained on structured clinical and
biochemical datasets. Deep learning models have proven
effective in analyzing ultrasound images for automatic
feature extraction. Moreover, hybrid and ensemble ap-
proaches have surpassed individual models by combining
multiple data types, which enhances their robustness and
generalizability. The results of this systematic review prove
that the integration of Al-driven diagnostic tools offers
great promise for achieving personalized, timely, and accu-
rate diagnoses of PCOS, potentially transforming women’s
reproductive healthcare.
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