

RESEARCH ARTICLE

Microalbuminuria: A potential marker in the assessment of cardiovascular risk

Heidrun Adumitrachioaiei^{1,2}, Mihai-Alexandru Haragus^{2*}, Dan-Alexandru Haragus³

1. Pediatric Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania

2. County Emergency Clinical Hospital, Bistrița, Romania

3. County Emergency Clinical Hospital, Cluj-Napoca, Romania

Background: Microalbuminuria is an early marker of renal and cardiovascular damage, but it is underutilized in the management of hypertension.

Objective: To investigate the association between microalbuminuria, hypertension severity, left ventricular mass, and ischemic cardiopathy.

Methods: A retrospective study was conducted over six months in the cardiology department of the Cluj Heart Institute, including 54 patients: 34 with essential hypertension and 20 normotensive controls. Microalbuminuria, left ventricular mass, and the presence of ischemic cardiopathy were analyzed in relation to hypertension grade.

Results: Microalbuminuria was present in 20.93% of hypertensive patients, with prevalence increasing to 50% in grade III hypertension. Mean urinary albumin excretion was significantly higher in grade III hypertension compared with controls (57.31 ± 20.27 vs. 5.46 ± 1.33 $\mu\text{g}/\text{min}$, $p = 0.0022$). Left ventricular mass rose with hypertension severity, being significantly greater in grade II ($p = 0.00685$) and grade III ($p = 0.00086$) compared with grade I. No linear correlation was found between microalbuminuria and left ventricular mass. Ischemic cardiopathy was diagnosed in 32.36% of hypertensive patients, but microalbuminuria levels were not significantly different between those with and without ischemic cardiopathy.

Conclusions: Microalbuminuria correlates with hypertension severity and may represent a useful marker for early detection of cardiovascular risk. Routine measurement could support risk stratification and therapeutic decisions in hypertensive patients. Larger studies are warranted to confirm these findings.

Keywords: microalbuminuria, cardiovascular, marker, hypertension

Received 1 September 2025 / Accepted 16 September 2025

Introduction

Microalbuminuria, defined by the presence of small amounts of albumin in the urine, has maintained its definition since 1982, when the Viberty group presented values between 20-200 $\mu\text{g}/\text{min}$, as values above the upper limits of normal but below clinical proteinuria or an albumin-creatinine ratio between 30-300 mg/g [1,2].

As we well know, values >200 $\mu\text{g}/\text{min}$ define clinical proteinuria, associated with cardiovascular diseases, hypertension, advanced renal damage, diabetes mellitus or obesity-related renal pathologies [3]. Microalbuminuria measurement is a useful tool in the management of these conditions, especially to prevent progression, but also an early predictor in determining these pathologies [1].

Physiologically, the glomerular capillary membrane acts as a filter with 5.5 nm pores and a negative electrical charge. The passage of albumin depends on size, shape, charge and transglomerular pressure. Albumin, a macromolecule with a weight of 69,000 da and a radius of 3.6 nm, has very low clearance (~0.1%), being the main protein in the body and being synthesized by hepatocytes, with a half-life of approximately 19 days. Albumine has multiple functions in the body, such as: maintaining colloid pressure, role in the transport of exogenous and endogenous substances, but

also antioxidant action [4-7]. Under normal conditions, almost all filtered albumin is reabsorbed. An increase in the filtered level indicates functional alterations and determines increased secretion.

The secretion rate varies with position, physical exertion, blood pressure and diet, with daily fluctuations of 20-60% in both healthy individuals and diabetics or hypertensives, being lower at night compared to the day. The urinary excretion rate can be increased in all forms of hypertension (grade I, II or III), the severity of microalbuminuria being correlated with the severity of HTN and with the damage to target organs, for example left ventricular mass [8-10].

Hypertension has been increasing significantly in recent years in low- and very low-income areas, where studies estimate that approximately 1.04 billion people, or 31.5% of the population in these areas, currently suffer from hypertension [10,11]. It is the leading cause of cardiovascular disease and premature death in adults [12-14]. Studies suggest that the development of hypertension in adulthood is based on pathophysiological mechanisms that begin early in life, during childhood [12,15].

According to studies, albumin is investigated in an extremely small percentage of patients with hypertension (4%), despite the fact that the European Society of Cardiology recognizes albumin as one of the 5 pillars in the prevention of cardiovascular pathologies [4,16].

* Correspondence to: Mihai-Alexandru Haragus
E-mail: haragus.1971@yahoo.com

The purpose of this paper is to present the link between albumin and hypertension, and thus to raise an alarm on the prevention of cardiovascular pathologies using albumin as a risk marker but also as a marker in the therapeutic management of hypertension.

Materials and methods

We conducted a retrospective study, over a period of 6 months, within the cardiology department of the Cluj Heart Institute, on a number of 54 patients, of whom 34 represented the study group (with hypertension) and 20 patients the control group.

Inclusion criteria for the study group: patients admitted to the cardiology department with essential hypertension (HTN).

Exclusion criteria for the study group: secondary hypertension or pathologies that may be associated with increased blood pressure, even if the patients currently had normal blood pressure values.

The inclusion criteria in the control group were patients without hypertension or pathologies associated with increased blood pressure values.

We aimed to determine the incidence and values of microalbuminuria in both groups, to see if microalbuminuria values increase in parallel with blood pressure values, to compare left ventricular mass values according to the severity of hypertension, to determine the incidence of ischemic cardiopathy in relation to the severity of hypertension, to compare microalbuminuria values in patients with hypertension and ischemic cardiopathy compared to those without ischemic cardiopathy, and to highlight a possible linear correlation between microalbuminuria and left ventricular mass.

Inclusion criteria: patients admitted to the cardiology department with essential hypertension.

Exclusion criteria: secondary hypertension or pathologies that may be associated with increased blood pressure, even if the patients currently had normal blood pressure values.

Results

The analysis of the two groups shows that the average age of the patients in the study group was 59.8 years, and in the control group it was 47.78 years. The female gender was significantly more representative (71%) compared to the male gender (29%) in the study group. The ratio regarding the environment of origin is approximately equal, between rural and urban. Most patients in the study group had grade III hypertension.

As for the severity of hypertension, 10 patients (29%) from the study group presented with hypertension grade I, 6 patients (18%) grade II and 18 patients (53%) grade III and 20.93% of the patients in the study presented with microalbuminuria. The microalbuminuria ratio varied depending on the degree of hypertension from 10% for stages I and II to 50% for those with grade III hypertension (Table 1).

Left ventricular mass was significantly higher in patients with grade II hypertension ($p=0.00685$) and in patients with grade III hypertension ($p=0.00086$) compared to patients with grade I hypertension. The mean values of LVH are presented in Table 2. No significant differences were found between LVH of patients with grade II hypertension and patients with grade III hypertension (Figure 1 and 2).

As we well know, HTN is associated with significant cardiovascular changes, and ischemic cardiomyopathy is an important complication that increases the morbidity and mortality rate in these patients. In our study group, 32.36% of patients had associated ischemic cardiopathy, with an incidence that was not associated with the severity of HTN, thus in patients with HTN grade I in the study, the incidence of ischemic cardiopathy was 30%, for those with HTN grade II, the incidence reached 50% and for patients with HTN grade III, the presence of IC was documented in 21.43% of patients

The average values of microalbuminuria were within the normal range in patients with grade I and grade II hypertension. Patients with grade III hypertension had microalbuminuria above the normal range. The difference between microalbuminuria found in the control group and that determined in patients with grade I hypertension was not statistically significant. A statistically significant difference was found between microalbuminuria determined in the control group and that of patients with grade III hypertension ($p=0.0022$). There was no statistically significant difference between microalbuminuria determined in patients with grade II hypertension and the control group ($p=0.0394$), as well as between microalbuminuria in patients with grade III hypertension and that of patients with grade II hypertension compared to patients with grade I hypertension. Patients with grade III hypertension had a significantly higher urinary albumin excretion compared to patients with grade I ($p=0.03$) and grade II ($p=0.04$) hypertension (Figure 3).

Although the microalbuminuria values determined in patients with HTN and IC are higher than in patients without IC ($39.845+/-16.32$ vs $19.68+/-6.64$), this difference is not statistically significant (p- NS) (Figure 4).

The linear correlation index between the value of microalbuminuria and left ventricular mass was calculated.

Table 1. Average microalbuminuria values in patients with grade I, II and III and in the control group

Batch	Microalbuminuria ($\mu\text{g}/\text{min}$) Average +/- standard error
Control	5.46 +/- 1.33
HTN grade I	9.86 +/- 3.10
HTN grade II	13.12 +/- 5.40
HTN grade III	57.31 +/- 20.27

Table 2. Left ventricular mass in patients with HTN

HTN Severity	Left ventricular mass Average +/- standard error
Grade I	246.51 +/- 19.69
Grade II	343.65 +/- 26.96
Grade III	344.00 +/- 18.28

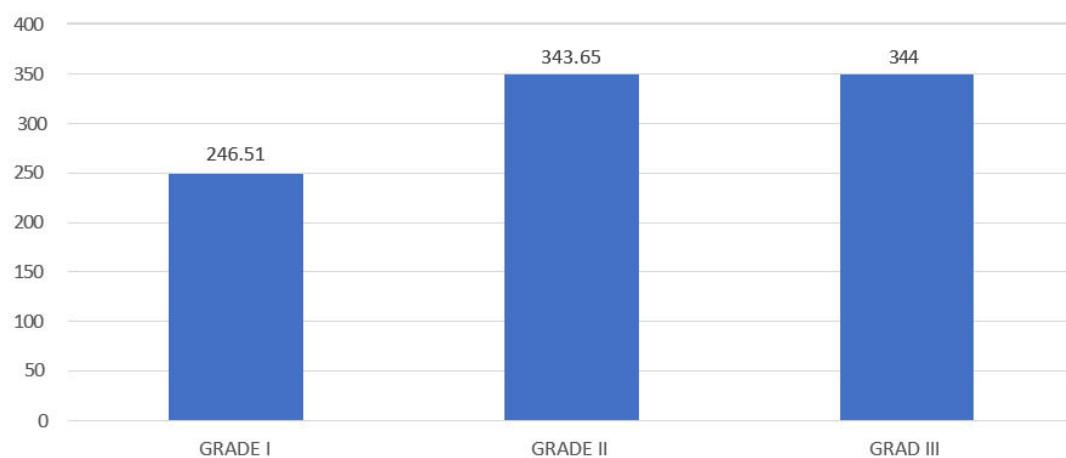


Fig. 1. Left Ventricular Mass according to the HTN severity

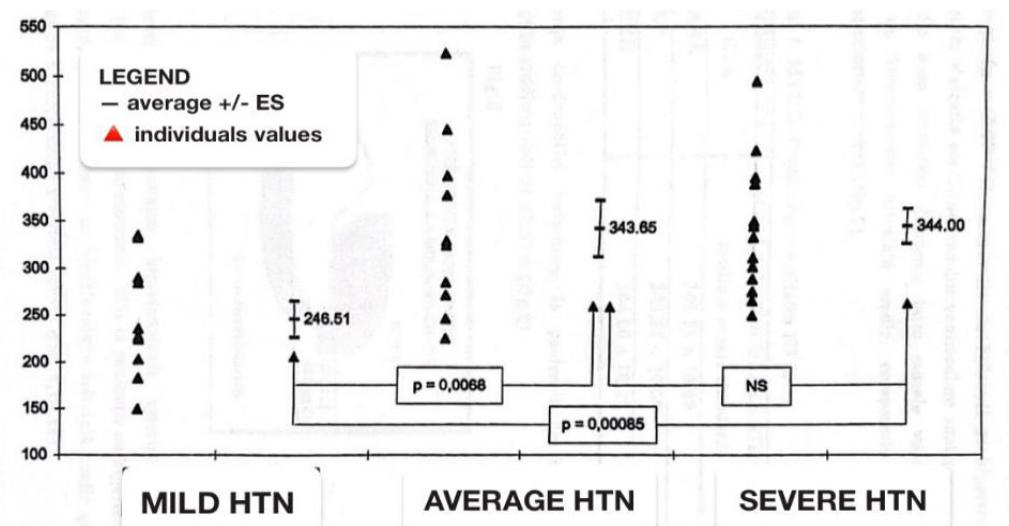


Fig. 2. Left Ventricular Mass according to the HTN severity

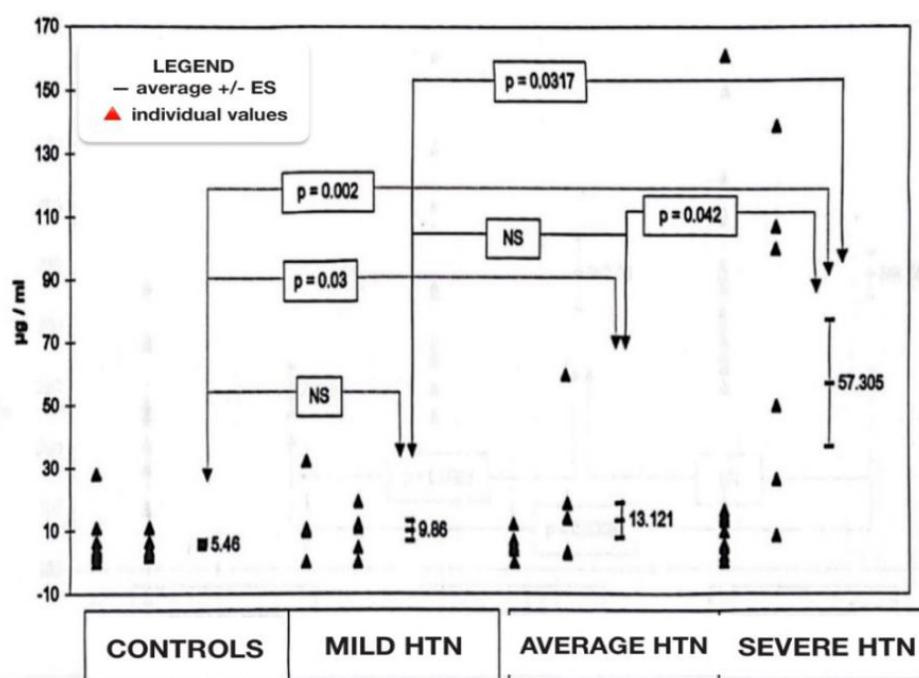


Fig.3. The relationship between hypertension and microalbuminuria

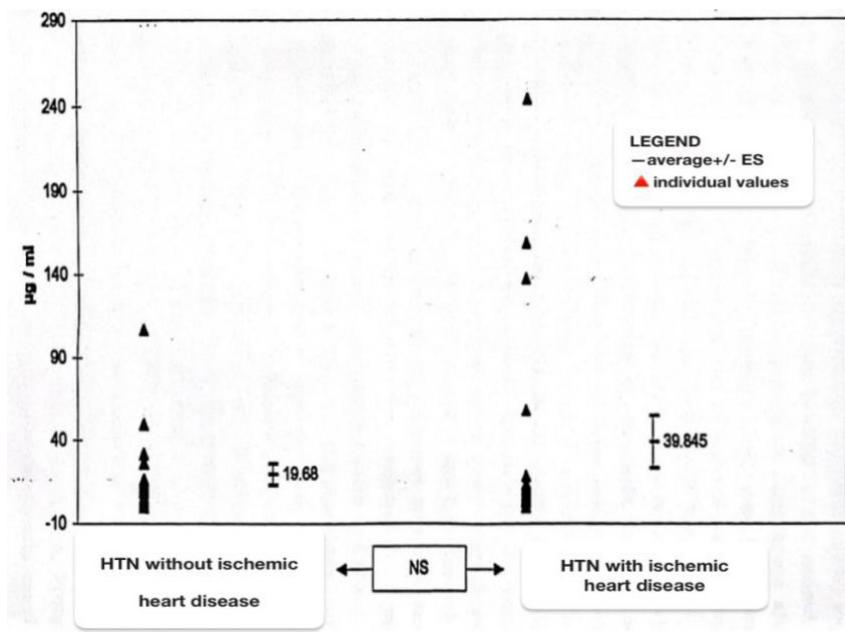


Fig. 4. The values of microalbuminuria in patients with hypertension and heart failure versus those without heart failure

No linear correlation was found between the increase in microalbuminuria and the increase in left ventricular mass (Figure 5).

Discussions

Hypertension is a real global health problem, with negative multisystemic repercussions, being an important factor in increasing morbidity and mortality [17,18]. Obesity, the definition of the unbalanced lifestyle of modern man, is an important cause for the occurrence of essential hypertension but also for the installation of chronic non-communicable diseases that associate hypertension and shorten life expectancy [19-21].

According to studies, the prevalence of microalbuminuria in patients with HTN varies between 8 and 40%. The incidence of microalbuminuria in the group of hypertensive patients studied was 20.39%, with a higher incidence in patients with HTN grade III-50% versus HTN grade I and II, but this difference did not reach the limit of statis-

tical significance ($p=0.07$ -NS). Thus, our study is in line with other specialized studies, which support the increase in the prevalence of microalbumin in parallel with the increase in blood pressure values [12,22].

The relationship between hypertension and microalbuminuria has also been studied in pediatric patients, due to the alarming increase in the prevalence of HTN in this age group. Thus, the analysis of a group of 306 children aged between 6 and 9 years, without cardiovascular or renal pathologies, shows a prevalence of 42.8% of prehypertension or hypertension, with a prevalence of microalbuminuria of 10.1% [12]. Numerous studies on this age group also suggest an association between blood pressure levels and microalbuminuria values, and The European Society of Hypertension recommends its routine measurement in the management of hypertension in the pediatric population [1,23].

The average EUA was within the normal range in patients with grade I hypertension ($9.86 \pm 3.1 \mu\text{g}/\text{min}$) and

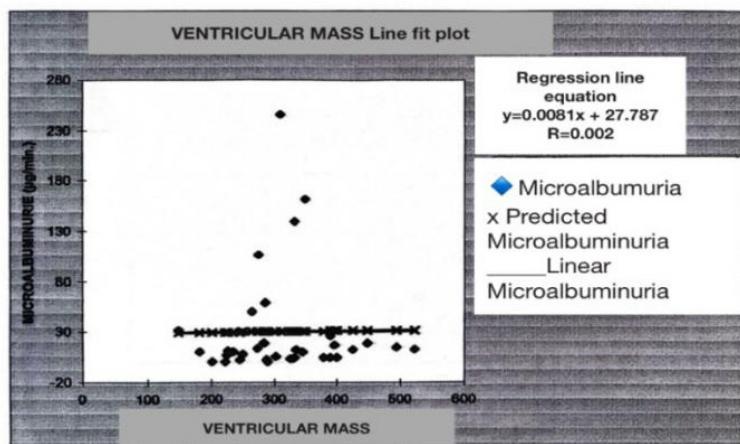


Fig. 5. The linear correlation index between the value of microalbuminuria and left ventricular mass

in those with grade II hypertension (13.12+/- 5.4 μ g/min), but for grade III hypertension microalbuminuria was 57.31+/-20.27 μ g/min, a significantly higher value compared to the control group ($p=0.0022$). Thus, we align ourselves with other studies that support that the severity of microalbuminuria correlates with the severity of hypertension and the degree of target organ damage.

Left ventricular mass, determined by echocardiography, is a common method for assessing the degree of left ventricular hypertrophy, especially in patients with hypertension [24,25]. It is proportional to the severity of hypertension and correlates with the severity of microalbuminuria.

The Framingham study confirms the association between left ventricular mass and cardiovascular morbidity or mortality, concluding that left ventricular hypertrophy is the most important risk factor for sudden death, congestive heart failure, acute myocardial infarction, and stroke [26,27]. Therefore, left ventricular hypertrophy is a risk factor for mortality and morbidity in patients with hypertension [28].

Left ventricular mass was significantly higher in patients with grade III hypertension (344.00+/-18.28g vs 246+/- 19.69g- $p=0.00086$) and grade II hypertension (343+/- 29.61g vs 246+/-19.69g- $p=0.00685$). In our study, the degree of left ventricular hypertrophy, expressed as left ventricular mass, was proportional to the severity of hypertension. The degree of left ventricular hypertrophy can also be influenced by the duration of hypertension or the degree of control, pharmacological or non- pharmacological, of blood pressure values [25,29].

It is known that left ventricular hypertrophy regresses under treatment with ACE inhibitors, beta- blockers and calcium channel blockers. In most studies in which a reduction in left ventricular hypertrophy was found, ACE inhibitors were used, representing the medication of choice [30]. The association between left ventricular hypertrophy and microalbuminuria represents an accumulation of two independent risk factors, correlated with increased cardiovascular morbidity and mortality, which may act through different mechanisms. Patients with HTN who present concomitant left ventricular hypertrophy and microalbuminuria should be treated and monitored carefully due to the accumulation of the aforementioned risk factors. We can state that microalbuminuria would represent a marker of the severity of vascular-endothelial damage in patients with essential HTN [12,31].

Microalbuminuria was also higher in patients with hypertension and ischemic heart disease compared to patients without ischemic heart disease (39.845 +/- 16.32 vs 19.68 +/- 6.64). This difference was not statistically significant ($p=NS$).

Boorsma and colab. present higher values of microalbuminuria and macroalbuminuria in patients diagnosed with heart failure [32].

The average EUA in hypertensive patients with ischemic heart disease did not exceed the value consid-

ered as the threshold for microalbuminuria (20 μ g/ml). The finding that patients with HTN and ischemic heart disease presented microalbuminuria, and in those with ischemic heart disease the average EUA did not exceed the microalbuminuria threshold, confirms once again the role of microalbuminuria as a marker of the severity of vascular damage and thereby of the predisposition to atherosclerosis. A study of 45,006 patients from Korea with a history of coronary artery calcification demonstrated the association between coronary artery calcifications identified by imaging studies and the presence of albuminuria [33].

Mortality from acute coronary syndromes was associated with albuminuria in the TRACER study [34].

Increased microalbuminuria was significantly associated with the occurrence of carotid plaques ($p=0.035$, OR-1.035, IC95%- 1.002-107) and in a study from Slovakia, we can thus state that microalbuminuria is a possible marker for assessing cardiovascular risk in both asymptomatic and symptomatic patients. [31]

Conclusions

Hypertension is a real health problem worldwide, being a leading cause of morbidity and mortality. It is part of the clinical picture of many chronic non-communicable diseases, either asymptomatic or symptomatic. The gray area, if we may say so, of hypertension is represented by asymptomatic patients, who benefit little or no from investigations, thus allowing elevated blood pressure values to persist without medical intervention for a long period of time, with negative effects on health.

Microalbuminuria could represent a rapid and early assessment marker both during hospitalization and during outpatient examinations or medical offices, correlated with the severity of arterial hypertension, but also a marker for personalized assessment of cardiovascular risk. Our study was consistent with other specialized studies, showing a statistically significant association between the degree of hypertension and cardiovascular damage with microalbuminuria values. The limitations of the study are represented by the small number of patients included in the study.

We consider more specialized studies, on larger samples, necessary so that the use of microalbuminuria as a marker for the severity of HTN becomes a common reality.

Authors' contributions

HA (Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Validation; Visualization; Writing – original draft; Writing – review & editing)

HM (Conceptualization; Formal analysis; Investigation; Methodology; Supervision; Writing – original draft; Writing – review & editing)

HD (Corresponding author) – (Conceptualization; Formal analysis; Investigation; Writing – review & editing)

Conflict of interest

None to declare.

Funding

No external funding was received.

References

- Chaijaroenkul W, Youngvises N, Thiengsusuk A, Plengsuriyakarn T, Suwanboriboon J, Sirisabhabhorn K, et al. MyuAlbumin: A Cutting-Edge Immunoturbidity-Based Device with Real-Time and Seamless Data Transmission for Early Detection of Chronic Kidney Disease at the Point of Care. *Biosensors*. iunie 2025;15(6):391.
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. *Kidney Int*. aprilie 2024;105(4S):S117-314.
- Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). *Kidney Int*. iunie 2005;67(6):2089-100.
- Romero-González G, Rodriguez-Chitiva N, Cañameras C, Paúl-Martínez J, Urrutia-Jou M, Troya M, et al. Albuminuria, Forgotten No More: Underlining the Emerging Role in CardioRenal Crosstalk. *J Clin Med*. ianuarie 2024;13(3):777.
- Heyman SN, Raz I, Dwyer JP, Weinberg Sibony R, Lewis JB, Abassi Z. Diabetic Proteinuria Revisited. Updated Physiologic Perspectives. *Cells*. ianuarie 2022;11(18):2917.
- Ndisang JF. Glomerular Endothelium and its Impact on Glomerular Filtration Barrier in Diabetes: Are the Gaps Still Illusive? *Curr Med Chem*. 2018;25(13):1525-9.
- Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. *Diabetes*. august 2007;56(8):2155-60.
- Andersen S, Tarnow L, Rossing P, Hansen BV, Parving HH. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. *Kidney Int*. februarie 2000;57(2):601-6.
- Alexandre J, Cracowski JL, Richard V, Bouhanick B, „Drugs. COVID-19“ working group of the French Society of Pharmacology, Therapeutics. Renin-angiotensin-aldosterone system and COVID-19 infection. *Ann Endocrinol*. iunie 2020;81(2-3):63-7.
- Kim HC. Epidemiology of cardiovascular disease and its risk factors in Korea. *Glob Health Med*. 30 iunie 2021;3(3):134-41.
- Duman H, Yıldız LM. Living with Hypertension: An Investigation of Illness Perception from a Primary Care Perspective. *Healthcare*, ianuarie 2025;13(16):2032.
- Matjuda EN, Sewani-Rusike CR, Anye SNC, Engwa GA, Nkeh-Chungu BN. Relationship between High Blood Pressure and Microalbuminuria in Children Aged 6-9 Years in a South African Population. *Children*, septembrie 2020;7(9):131.
- Goorani S, Zangene S, Imig JD. Hypertension: A Continuing Public Healthcare Issue. *Int J Mol Sci*. ianuarie 2025;26(1):123.
- Norfazilah A, Samuel A, Law P, Ainaa A, Nurul A, Syahnaz MH, et al. Illness perception among hypertensive patients in primary care centre UKMMC. *Malays Fam Physician Off J Acad Fam Physicians Malays*. 2013;8(3):19-25.
- Lane DA, Gill P. Ethnicity and tracking blood pressure in children. *J Hum Hypertens*. aprilie 2004;18(4):223-8.
- Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Back M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. *Eur Heart J*. 7 septembrie 2021, 42(34):13227- 337.
- Zuin M, Tognola C, Maloberti A, Parati G, Di Fusco SA, Gil Ad V, et al. Advances in Hypertension Management: Insights from the Latest European Guidelines. *J Cardiovasc Dev Dis*. aprilie 2025;12(4):155.
- Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). *J Hypertens*. 1 decembrie 2023;41(12):1874-2071.
- Kinlen D, Cody D, O’Shea D. Complications of obesity. *QJM Mon J Assoc Physicians*. 1 iulie 2018;111(7):437-43.
- Agha M, Agha R. The rising prevalence of obesity: part A: impact on public health. *Int J Surg Oncol*. august 2017;2(7):e17.
- Frühbeck G, Baker JL, Busetto L, Dicker D, Goossens GH, Halford JCG, et al. European Association for the Study of Obesity Position Statement on the Global COVID-19 Pandemic. *Obes Facts*. mai 2020;13(2):292-6.
- Sukhram SD, Zarini GG, Shaban LH, Vaccaro JA, Huffman FG. Microalbuminuria and Hypertension among Immigrants with Type 2 Diabetes: A Community-Based Cross- Sectional Study. *J Pers Med*. noiembrie 2022;12(11):1777.
- Lurbe E, Cifkova R, Cruickshank JK, Dillon MJ, Ferreira I, Invitti C, et al. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. *J Hypertens*. septembrie 2009;27(9):1719-42.
- Fuchs FD, Valter LK, Tavares AL, Camilo BP, Whelton PK, Scala LCN, et al. Electrocardiographic Left Ventricular Mass Trajectories and the Effects of Treatment in Patients at Different Stages of Hypertension. *J Clin Med*. ianuarie 2025;14(7):2313.
- Talle MA, Doubell AF, Robbertse PPS, Lahri S, Herbst PG. Cardiac Morphology, Function, and Left Ventricular Geometric Pattern in Patients with Hypertensive Crisis: A Cardiovascular Magnetic Resonance-Based Study. *J Cardiovasc Dev Dis*. septembrie 2023;10(9):367.
- Franklin SS, Wong ND. Hypertension and cardiovascular disease: contributions of the framingham heart study. *Glob Heart*. martie 2013;8(1):49-57.
- Bersano A, Gatti L. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. *Int J Mol Sci*. ianuarie 2023;24(19):14848.
- Mustafa ER, Istrătoie O, Mușetescu R. Blood Pressure Variability and Left Ventricular Mass in Hypertensive Patients. *Curr Health Sci J*. 2016;42(1):47-50.
- Luca AC, Curpan AS, Braha EE, Tarcă E, Iordache AC, Luca FA, et al. Increasing Trends in Obesity- Related Cardiovascular Risk Factors in Romanian Children and Adolescents- Retrospective Study. *Healthcare*. 5 decembrie 2022;10(12):2452.
- New Perspectives and Strategies for the Management of Hypertension [Internet]. [citat 18 august 2025]. Disponibil la: <https://www.mdpi.com/2308-3425/10/8/346>
- Szabóvá E, Lisovszki A, Fatlová E, Kolarčík P, Szabó P, Molnár T. Prevalence of Microalbuminuria and Its Association with Subclinical Carotid Atherosclerosis in Middle Aged, Nondiabetic, Low to Moderate Cardiovascular Risk Individuals with or without Hypertension. *Diagnostics*. septembrie 2021;11(9): 1716.
- Boorsma EM, Ter Maaten JM, Damman K, van Essen BJ, Zannad F, van Veldhuisen DJ, et al. Albuminuria as a marker of systemic congestion in patients with heart failure. *Eur Heart J*. 1 februarie 2023;44(5): 368-80.
- Song JJ, Lee KB, Hyun YY, Kim H. Trace Albumin in the Urine Dipstick Test is Associated with Coronary Artery Calcification in Korean Adults. *Nephron*.
- Åkerblom A, Clare RM, Lokhnygina Y, Wallentin L, Held C, Van de Werf F, et al. Albuminuria and cardiovascular events in patients with acute coronary syndromes: Results from the TRACER trial. *Am Heart J*. august 2016;178:1-8.